研究生: |
陳顥 Chen, Hao |
---|---|
論文名稱: |
以胺基酸鹽吸收劑配方 捕獲燃煤電廠排氣中之二氧化碳 CO2 Capture from Coal-Fired Power Plant Using Amine-Based Amino Acid Salt Absorbent |
指導教授: |
談駿嵩
Tan,Chung-Sung |
口試委員: |
區迪頤
John Ou 陳郁文 Chen,Yu-Wen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 二氧化碳捕獲 、超重力旋轉床 、胺基酸鹽 |
外文關鍵詞: | CO2 capture, Rotating packed bed, Amino acid salt |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胺基酸鹽被認為具有和CO2良好的反應性、低蒸氣壓、熱穩定性、低氧氣劣化性、環境友善及生物可分解性等優點,是新一代具潛力的吸收劑,因此本研究從胺基酸鹽中篩選出具有潛力的吸收劑進行CO2吸收及再生的探討,並以實驗室發展之超重力旋轉床技術(Higee Technology)取代傳統吸收塔,以縮小設備體積並增加質傳係數KGa,使吸收劑更能有效捕獲CO2。
RPB吸收實驗結果顯示,PZ/DETA/Na ADS(15 wt%/15 wt%/10 wt%)吸收劑黏度較PZ/DETA (15 wt%/15 wt%)高1.48倍,雖然黏度增加會降低CO2於吸收劑中之擴散係數及增加CO2於吸收劑中之亨利常數,但是此時自由胺基數是多於PZ/DETA (15 wt%/15 wt%),且藉由RPB填料區的高速旋轉提供之高剪切力,可將吸收劑切割及分散以減少因黏度造成的負面效應,所以在CO2捕獲效率及KGa方面, PZ/DETA/Na ADS(15 wt%/15 wt%/10 wt%)吸收劑配方與PZ/DETA (15 wt%/15 wt%)表現相似。
RPB吸收與再生連續操作實驗結果顯示,在2atm、120 oC下相較於30 wt% MEA,PZ/DETA/Na ADS(15 wt%/15 wt%/10 wt%)吸收劑配方之再生能耗可減少8.8%。因為PZ及DETA吸收劑之反應熱及比熱皆較30 wt% MEA為低,且吸收劑濃度較高可減少部分蒸發熱,在後續的50oC RPB吸收實驗中PZ/DETA/Na ADS(15 wt%/15 wt%/10 wt%)吸收劑配方在CO2捕獲量方面可較30 wt% MEA提升22.6%,可處理較多的氣體量。
綜合各吸收劑配方吸收效果、再生能耗與氧氣溶解度之比較,本研究所提出之PZ/DETA/Na ADS(15 wt%/15 wt%/10 wt%)吸收劑配方實為一具有發展潛力之吸收劑。
Amino acid salts are of great interest as potential solvents for CO2 capture because they are considered have a relatively fast rate of CO2 absorption, less volatile, higher stability towards oxygen and thermal and environmentally friendly. This research aims to find out the potential amino acid salt as absorbent primarily by investigating their absorption and desorption performance, and to apply the potential absorbent in rotational packed bed (RPB). Compared with traditional packed bed (PB), the rotational packed bed could provide higher KGa, and have smaller equipment volume, which could further increase the capture efficiency.
The experimental results show that the viscosity of PZ/DETA/Na ADS (15 wt%/15 wt%/10 wt%) is 1.48 times the viscosity of PZ/DETA(15 wt%/15 wt%). Although the higher viscosity could lower the diffusion coefficient, and increase the Henry constant of CO2 in absorbent, but the amount of free amines in PZ/DETA/Na ADS (15 wt%/15 wt%/10 wt%) is more than the ones in PZ/DETA(15 wt%/15 wt%). Also, he absorbent could be split into small drops and well-dispersed with the shear stress of RPB, and this could further reduce the viscosity effect. As a result, PZ/DETA/Na ADS (15 wt%/15 wt%/10 wt%) has similar capture performance as PZ/DETA(15 wt%/15 wt%).
The RPB continuous operations of absorption and desorption results show that under 2 atm 120 oC situation, the PZ/DETA/Na ADS (15 wt%/15 wt%/10 wt%) could be regenerated with 8.8% lower energy than conventional absorbent 30 wt% MEA. This is because that the reaction energy and sensible heat of PZ and DETA are both lower than the ones of MEA, and it also had high CO2 capture efficiency.
PZ/DETA/Na ADS (15 wt%/15 wt%/10 wt%), as the most promising absorbent, could be regenerated with lower energy than conventional absorbent 30 wt% MEA, and it also had high CO2 capture efficiency and CO2 capacity. Besides, DO value in the formula is lower, so it can reduce the corrosion.
Ahn, S.; Song, H.-J.; Park, J.-W.; Lee, J.; Lee, I.; Jang, K.-R., Characterization of Metal Corrosion by Aqueous Amino Acid Salts for the Capture of CO2, Korean J. Chem. Eng. 2010, 27, 1576.
Aronu, U. E.; Svendsen, H. F.; Hoff, K. A., Investigation of Amine Amino Acid Salts for Carbon Dioxide Absorption, Int. J. Greenhouse Gas Control 2010, 4, 771.
Aroonwilas, A.; Veawab, A.; Tontiwachwuthikul, P., Behavior of the Mass-Transfer Coefficient of Structured Packings in CO2 Absorbers with Chemical Reactions, Ind. Eng. Chem. Res. 1999, 38, 2044.
Bishnoi, S.; Rochelle, G. T., Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility, Chem. Eng. Sci. 2000, 55, 5531.
Blauwhoff, P. M. M.; Versteeg, G. F.; Van Swaaij, W. P. M., A Study on the Reaction between CO2 and Alkanolamines in Aqueous Solutions, Chem. Eng. Sci. 1984, 39, 207.
Brouwer, J.; Feron, P.; Ten Asbroek, N. In Fourth Annual Conference on Carbon Capture & Sequestration, May 2005; Vol. 5.
Chang, E. E.; Pan, S.-Y.; Chen, Y.-H.; Tan, C.-S.; Chiang, P.-C., Accelerated Carbonation of Steelmaking Slags in a High-Gravity Rotating Packed Bed, J. Hazard. Mater. 2012, 227–228, 97.
Chen, J.-F.; Wang, Y.-H.; Guo, F.; Wang, X.-M.; Zheng, C., Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation, Ind. Eng. Chem. Res. 2000, 39, 948.
Cheng, H.-H.; Lai, C.-C.; Tan, C.-S., Thermal Regeneration of Alkanolamine Solutions in a Rotating Packed Bed, Int. J. Greenhouse Gas Control 2013, 16, 206.
Cheng, H.-H.; Shen, J.-F.; Tan, C.-S., CO2 Capture from Hot Stove Gas in Steel Making Process, Int. J. Greenhouse Gas Control 2010, 4, 525.
Cheng, H.-H.; Tan, C.-S., Carbon Dioxide Capture by Blended Alkanolamines in Rotating Packed Bed, Energy Procedia 2009, 1, 925.
Cheng, H.-H.; Tan, C.-S., Reduction of CO2 Concentration in a Zinc/Air Battery by Absorption in a Rotating Packed Bed, J. Power Sources 2006, 162, 1431.
Cheng, H.-H.; Tan, C.-S., Removal of CO2 from Indoor Air by Alkanolamine in a Rotating Packed Bed, Sep. Purif. Technol. 2011, 82, 156.
Choi, Y. S.; Duan, D.; Nešić, S.; Vitse, F.; Bedell, S. A.; Worley, C., Effect of Oxygen and Heat Stable Salts on the Corrosion of Carbon Steel in MDEA-Based CO2 Capture Process, NACE International 2010, 66, 125004.
Ciftja, A. F.; Hartono, A.; Svendsen, H. F., Selection of Amine Amino Acids Salt Systems for CO2 Capture, Energy Procedia 2013, 37, 1597.
Dumée, L.; Scholes, C.; Stevens, G.; Kentish, S., Purification of Aqueous Amine Solvents Used in Post Combustion CO2 Capture: A Review, Int. J. Greenhouse Gas Control 2012, 10, 443.
Fowler, R.; Gerdes, K.; Nygaard, H. In Offshore Technology Conference; Offshore Technology Conference: 1989.
Freeman, S. A.; Dugas, R.; Van Wagener, D.; Nguyen, T.; Rochelle, G. T., Carbon Dioxide Capture with Concentrated, Aqueous Piperazine, Energy Procedia 2009, 1, 1489.
Freeman, S. A.; Rochelle, G. T., Thermal Degradation of Piperazine and Its Structural Analogs, Energy Procedia 2011, 4, 43.
Goff, G. S.; Rochelle, G. T., Oxidation Inhibitors for Copper and Iron Catalyzed Degradation of Monoethanolamine in CO2 Capture Processes, Ind. Eng. Chem. Res. 2006, 45, 2513.
Gouedard, C.; Picq, D.; Launay, F.; Carrette, P. L., Amine Degradation in CO2 Capture. I. A Review, Int. J. Greenhouse Gas Control 2012, 10, 244.
Hart, A.; Gnanendran, N., Cryogenic CO2 Capture in Natural Gas, Energy Procedia 2009, 1, 697.
Hartono, A.; da Silva, E. F.; Svendsen, H. F., Kinetics of Carbon Dioxide Absorption in Aqueous Solution of Diethylenetriamine (DETA), Chem. Eng. Sci 2009, 64, 3205
He, L.; Li, J.; Chen, L.; Ni, Y.; Xu, G.; Zhang, Y.; Wu, W. In Cleaner Combustion and Sustainable World; Qi, H., Zhao, B., Eds.; Springer Berlin Heidelberg: 2013, p 1347.
Holst, J. v.; Kersten, S. R. A.; Hogendoorn, K. J. A., Physiochemical Properties of Several Aqueous Potassium Amino Acid Salts, J. Chem. Eng. Data 2008, 53, 1286.
Holst, J. v.; Versteeg, G. F.; Brilman, D. W. F.; Hogendoorn, J. A., Kinetic Study of with Various Amino Acid Salts in Aqueous Solution, Chem. Eng. Sci. 2009, 64, 59.
Hook, R. J., An Investigation of Some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds, Ind. Eng. Chem. Res. 1997, 36, 1779.
Huang, Q.; Bhatnagar, S.; Remias, J. E.; Selegue, J. P.; Liu, K., Thermal Degradation of Amino Acid Salts in CO2 Capture, Int. J. Greenhouse Gas Control 2013, 19, 243.
Idem, R.; Wilson, M.; Tontiwachwuthikul, P.; Chakma, A.; Veawab, A.; Aroonwilas, A.; Gelowitz, D., Pilot Plant Studies of the CO2 Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration Plant, Ind. Eng. Chem. Res. 2006, 45, 2414.
Jassim, M. S.; Rochelle, G.; Eimer, D.; Ramshaw, C., Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed, Ind. Eng. Chem. Res. 2007, 46, 2823.
Knudsen, J. N.; Jensen, J. N.; Vilhelmsen, P.-J.; Biede, O., Experience with CO2 Capture from Coal Flue Gas in Pilot-Scale: Testing of Different Amine Solvents, Energy Procedia 2009, 1, 783.
Ku, Y.; Ji, Y.-S.; Chen, H.-W., Ozonation of Cresol in Aqueous Solutions Using a Rotating Packed-Bed Reactor, Water Environ. Res. 2008, 80, 41.
Kuettel, D. A.; Fischer, B.; Hohe, S.; Joh, R.; Kinzl, M.; Schneider, R., Removal of Acidic Gases and Metal Ion Contaminants with PostCapTM Technology, Energy Procedia 2013, 37, 1687.
Kumar, P. S.; Hogendoorn, J. A.; Feron, P. H. M.; Versteeg, G. F., Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 1. Crystallization in Carbon Dioxide Loaded Aqueous Salt Solutions of Amino Acids, Ind. Eng. Chem. Res. 2003, 42, 2832.
Kumar, P. S.; Hogendoorn, J. A.; Timmer, S. J.; Feron, P. H. M.; Versteeg, G. F., Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 2. Experimental VLE Data and Model, Ind. Eng. Chem. Res. 2003, 42, 2841.
Kumar, P. S.; Hogendoorn, J. A.; Versteeg, G. F.; Feron, P. H. M., Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine, American Institute of Chemical Engineers. AIChE Journal 2003, 49, 203.
Kothandaraman, A.; Nord, L.; Bolland, O.; Herzog, H. J.; McRae, G. J. Comparison of Solvents for Post-combustion Capture of CO2 by Chemical Absorption. Energy Procedia 2009, 1, 1373-1380.
Lepaumier, H.; Picq, D.; Carrette, P.-L., New Amines for CO2 Capture. I. Mechanisms of Amine Degradation in the Presence of CO2, Ind. Eng. Chem. Res. 2009, 48, 9061.
Li, L., Voice, A.K., Li, H., Namjoshi, O., Nguyen, T., Du, Y., Rochelle, G.T., Amine Blends Using Concentrated Piperazine, Energy Procedia 2013, 37, 353-369.
Liao, C.-H.; Li, M.-H., Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Monoethanolamine+N-methyldiethanolamine, Chem. Eng. Sci. 2002, 57, 4569.
Lin, C.-C.; Ho, T.-J.; Liu, W.-T., Distillation in a Rotating Packed Bed, J. Chem. Eng. Jpn. 2002, 35, 1298.
Lin, C.-C.; Liu, W.-T., Ozone Oxidation in a Rotating Packed Bed, J. Chem. Technol. Biotechnol. 2003, 78, 138.
Lin, C.-C.; Liu, W.-T.; Tan, C.-S., Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed, Ind. Eng. Chem. Res. 2003, 42, 2381.
Lin, C. C.; Liu, W. T., Mass Transfer Characteristics of a High-voidage Rotating Packed Bed, J. Ind. Eng. Chem. 2007, 13, 71.
Lin, C. C.; Liu, W. T., Removal of an Undesired Component froma Valuable Product Using a Rotating Packed Bed, J. Ind. Eng. Chem. 2006, 12, 455.
Majchrowicz, M. E. Amino Acid Salt Solutions for Carbon Dioxide Capture; Gildeprint, 2014.
Majchrowicz, M. E.; Brilman, D. W. F.; Groeneveld, M. J., Precipitation Regime for Selected Amino Acid Salts for CO2 Capture from flue Gases, Energy Procedia 2009, 1, 979.
Mertens, J.; Lepaumier, H.; Desagher, D.; Thielens, M.-L., Understanding Ethanolamine (MEA) and Ammonia Emissions from Amine Based Post Combustion Carbon Capture: Lessons Learned from Field Tests, Int. J. Greenhouse Gas Control 2013, 13, 72.
Moon, S.-H.; Shim, J.-W., A Novel Process for CO2/CH4 Gas Separation on Activated Carbon Fibers—Electric Swing Adsorption, J. Colloid Interface Sci. 2006, 298, 523.
Mumford, K. A.; Smith, K. H.; Anderson, C. J.; Shen, S.; Tao, W.; Suryaputradinata, Y. A.; Qader, A.; Hooper, B.; Innocenzi, R. A.; Kentish, S. E.; Stevens, G. W., Post-Combustion Capture of CO2: Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent, Energy & Fuels 2011, 26, 138.
Mumford, K. A.; Smith, K. H.; Anderson, C. J.; Shen, S.; Tao, W.; Suryaputradinata, Y. A.; Quyn, D. M.; Qader, A.; Hooper, B.; Innocenzi, R. A.; Kentish, S. E.; Stevens, G. W., Post-Combustion Capture of CO2: Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent, Energy and Fuels 2012, 26, 6449.
Nascimento, J.; Ravagnani, T.; Pereira, J., Experimental Study of a Rotating Packed Bed Distillation Column, Braz. J. Chem. Eng. 2009, 26, 219.
Olajire, A. A., CO2 Capture and Separation Technologies for End-of-Pipe Applications – A Review, Energy 2010, 35, 2610.
Pan, S.-Y.; Chiang, P.-C.; Chen, Y.-H.; Tan, C.-S.; Chang, E. E., Ex Situ CO2 Capture by Carbonation of Steelmaking Slag Coupled with Metalworking Wastewater in a Rotating Packed Bed, Environ. Sci. Technol. 2013, 47, 3308.
Portugal, A. F.; Derks, P. W. J.; Versteeg, G. F.; Magalhães, F. D.; Mendes, A., Characterization of Potassium Glycinate for Carbon Dioxide Absorption Purposes, Chem. Eng. Sci. 2007, 62, 6534.
Rahim, N. A.; Ghasem, N.; Al-Marzouqi, M., Absorption of CO2 from Natural Gas Using Different Amino Acid Salt Solutions and Regeneration Using Hollow Fiber Membrane Contactors, J. Nat. Gas Sci. Eng. 2015, 26, 108.
Rinker, E. B.; Sami, S. A.; Sandall, O. C., Kinetics and Modelling of Carbon Dioxide Absorption into Aqueous Solutions of N-methyldiethanolamine, Chem. Eng. Sci. 1995, 50, 755.
Rochelle, G. T., Amine Scrubbing for CO2 Capture, Science 2009, 325, 1652.
Rooney, P. C.; Daniels, D. D., Oxygen Solubility in Various Alkanolamine/Water Mixtures, Petroleum Technology Quarterly 1998, 97.
Sanchez-Fernandez, E.; Mercader, F. d. M.; Misiak, K.; van der Ham, L.; Linders, M.; Goetheer, E., New Process Concepts for CO2 Capture Based on Precipitating Amino Acids, Energy Procedia 2013, 37, 1160.
Simons, K.; Nijmeijer, K.; Mengers, H.; Brilman, W.; Wessling, M., Highly Selective Amino Acid Salt Solutions as Absorption Liquid for CO2 Capture in Gas-Liquid Membrane Contactors, ChemSusChem 2010, 3, 939.
Singh, P.; van Swaaij, W. P. M.; Brilman, D. W. F., Kinetics Study of Carbon Dioxide Absorption in Aqueous Solutions of 1,6-hexamethyldiamine (HMDA) and 1,6-hexamethyldiamine, N,N' di-methyl (HMDA, N,N'), Chem. Eng. Sci. 2011, 66, 4521.
Tan, C.-S.; Chen, J.-E., Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed, Separation and Purification Technology 2006, 49, 174.
Tobiesen, F. A.; Svendsen, H. F. Study of a Modified Amine-based Regeneration Unit. Ind. Eng. Chem. Res. 2006, 45, 2489-2496
Wang, G. Q.; Xu, O. G.; Xu, Z. C.; Ji, J. B., New HIGEE-Rotating Zigzag Bed and Its Mass Transfer Performance, Industrial & Engineering Chemistry Research 2008, 47, 8840.
Wang, M.; Zou, H. K.; Shao, L.; Chen, J. F., Controlling Factors and Mechanism of Preparing Needlelike CaCO3 under High Gravity Environment, Powder Technol. 2004, 142, 166.
Wang, T.; Jens, K.-J., Oxidative Degradation of Aqueous 2-Amino-2-methyl-1-propanol Solvent for Postcombustion CO2 Capture, Ind. Eng. Chem. Res. 2012, 51, 6529.
Wei, C.-C.; Puxty, G.; Feron, P., Amino Acid Salts for CO2 Capture at Flue Gas Temperatures, Chem. Eng. Sci. 2014, 107, 218.
Wei, S. C.-C.; Puxty, G.; Feron, P., Amino Acid Salts for CO2 Capture at Flue Gas Temperatures, Energy Procedia 2013, 37, 485.
Xiao, J.; Li, C.-W.; Li, M.-H., Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of 2-Amino-2-Methyl-1-Propanol+Monoethanolamine, Chem. Eng. Sci. 2000, 55, 161.
Xu, S.; Wang, Y.-W.; Otto, F. D.; Mather, A. E., Kinetics of the Reaction of Carbon Dioxide with 2-amino-2-methyl-1-propanol Solutions, Chem. Eng. Sci. 1996, 51, 841.
Xu, S.; Wang, Y.-W.; Otto, F. D.; Mather, A. E., Kinetics of the Reaction of Carbon Dioxide with 2-Amino-2-Methyl-1-Propanol Solutions, Chem. Eng. Sci. 1996, 51, 841.
Yan, S.-p.; Fang, M.-X.; Zhang, W.-F.; Wang, S.-Y.; Xu, Z.-K.; Luo, Z.-Y.; Cen, K.-F., Experimental Study on the Separation of CO2 from Flue Gas Using Hollow Fiber Membrane Contactors without Wetting, Fuel Process. Technol. 2007, 88, 501.
Yan, S.; He, Q.; Zhao, S.; Wang, Y.; Ai, P., Biogas Upgrading by CO2 Removal with a Highly Selective Natural Amino Acid Salt in Gas–Liquid Membrane Contactor, Chem. Eng. Process. 2014, 85, 125.
Yan, S.; He, Q.; Zhao, S.; Zhai, H.; Cao, M.; Ai, P., CO2 Removal from Biogas by Using Green Amino Acid Salts: Performance Evaluation, Fuel Process. Technol. 2015, 129, 203.
Yang, N.; Xu, D.-Y.; Wei, C.-C.; Puxty, G.; Yu, H.; Maeder, M.; Norman, S.; Feron, P., Protonation Constants and Thermodynamic Properties of Amino Acid Salts for CO2 Capture at High Temperatures, Ind. Eng. Chem. Res. 2014, 53, 12848.
Yu, C.-H.; Cheng, H.-H.; Tan, C.-S., CO2 Capture by Alkanolamine Solutions Containing Diethylenetriamine and Piperazine in a Rotating Packed Bed, Int. J. Greenhouse Gas Control 2012, 9, 136.
Yu, C.-H.; Huang, C.-H.; Tan, C.-S., A Review of CO2 Capture by Absorption and Adsorption, Aerosol and Air Quality Research 2012, 12, 745.
Yu, C.-H.; Lin, Y.-X.; Tan, C.-S., Effects of Inorganic Salts on Absorption of CO2 and O2 for Absorbents Containing Diethylenetriamine and Piperazine, Int. J. Greenhouse Gas Control 2014, 30, 118.
Yu, C.-H.; Tan, C.-S., CO2 Capture by Aqueous Solution Containing Mixed Alkanolamines and Diethylene Glycol in a Rotating Packed Bed, Energy Procedia 2014, 63, 758.
Yu, C.-H.; Tan, C.-S., Mixed Alkanolamines with Low Regeneration Energy for CO2 Capture in a Rotating Packed Bed, Energy Procedia 2013, 37, 455.
Yu, C.-H.; Wu, T.-W.; Tan, C.-S., CO2 Capture by Piperazine Mixed with Non-Aqueous Solvent Diethylene Glycol in a Rotating Packed Bed, Int. J. Greenhouse Gas Control 2013, 19, 503.