簡易檢索 / 詳目顯示

研究生: 王家鵬
Wang, Chia-Peng
論文名稱: 四氧化三鐵八面體與菱形十二面體的合成以及其光學和磁性之晶面效應
Fe3O4 Octahedra and Rhombic Dodecahedra with Facet-Dependent Optical and Magnetic Behaviors
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 郭俊宏
Kuo, Chun-Hong
楊東翰
Yang, Tung-Han
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 64
中文關鍵詞: 奈米粒子晶面效應磁性光學
外文關鍵詞: nanoparticles, facet-dependent, magnetic property, optical property
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以水熱法合成具有形狀控制的四氧化三鐵奈米晶體,並進行光學與磁性晶面效應的研究。在改變溶劑用量及鹼的濃度的情況下可以得到尺寸可調的八面體的四氧化三鐵,其對邊長分別為36奈米、45奈米及100奈米,以及可以得到243奈米的菱形十二面體。在電子顯微鏡下,小顆粒的八面體展現出較好的均勻性,但隨著尺寸變大均勻性會慢慢降低。並且透過X光繞射光譜、X射線光電子能譜學以及傅立葉轉換紅外光譜得知所合成出的奈米晶體為四氧化三鐵而非其他的鐵氧化物。在光學性質的量測上,四氧化三鐵的八面體之吸收峰隨晶體尺寸變小而藍移,而不同形狀之四氧化三鐵奈米晶體也展現了吸收值位移之現象。這兩種形狀之晶體在磁性的量測上也展現出晶面效應的現象,以及不同程度的遲滯現象。


    This study investigates the optical and magnetic surface effects of shape-controlled iron(III) oxide (Fe3O4) nanocrystals synthesized using a hydrothermal method. By varying the solvent volume and alkaline concentration, size-tunable octahedra Fe3O4 nanocrystals with edge lengths of 36 nm, 45 nm, and 100 nm, as well as a rhombic dodecahedra with a size of 243 nm, were obtained. Under electron microscopy, the smaller octahedra particles exhibited better uniformity, but uniformity decreased as the size increased. Characterization techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy confirmed the synthesis of Fe3O4 nanocrystals rather than other iron oxide compounds. In terms of optical properties, the absorption peaks of the octahedral Fe3O4 shift towards the blue region as the crystal size decreased, and different shapes of Fe3O4 nanocrystals exhibit absorption wavelength shifts. Both crystal shapes show magnetic surface effects and varying degrees of hysteresis in magnetic measurements.

    摘要…………………………………………………………………………….…….……ⅰ Abstract………………………………………………………………………….…….…..ⅱ 致謝……………………………………………………………………………….………ⅲ Table of Contents………………………………………………………….……………...ⅳ List of Tables……………………………………………………………………….…….ⅶ List of Figures……………………………………………………………………...……ⅷ List of Schemes………………………………………………………….………………xⅳ Chapter 1 Fe3O4 Crystals and Semiconductor Facet Effects………………………………1 1.1 Semiconductor Facet-Dependent Effects………………………………………...1 1.1.1 Facet-dependent electrical conductivity……………………………………1 1.1.2 Facet-dependent optical property…………………………………………..5 1.2 Introduction to iron(II) iron(III) oxide…………………………………………...7 1.3 Synthesis methods………………………………………………………………..8 1.4 Magnetic property………………………………………………………………11 1.5 Optical property…………………………………………………………………18 Chapter 2 Fe3O4 Octahedra and Rhombic Dodecahedra for Optical and Magnetic Characterization…………………………………………………………………………..23 2.1 Experimental section…………………………………………………………………23 2.1.1 Chemicals……………………………………………………………………..23 2.1.2 Synthesis of size-tunable Fe3O4 octahedra……………………………………24 2.1.3 Synthesis of Fe3O4 rhombic dodecahedra…………………………………….25 2.1.4 Instrumentation………………………………………………………………..26 2.2 Results and Discussion……………………………………………………………….27 2.2.1 Particle synthesis……………………………………………………………...27 2.2.2 Materials Characterization……………………………………………………28 2.2.2.1 Morphology and particle size determination…………………………..28 2.2.2.2 Crystal phase characterization using X-ray diffraction………………..30 2.2.2.3 Fourier transform infrared spectral analysis…………………………...35 2.2.2.4 Particle surface analysis……………………………………………….36 2.2.2.5 Crystal morphology and structure characterization through TEM…….38 2.3 Synthesis and characterization of Fe3O4 rhombic dodecahedra……………………...39 2.3.1 Particle synthesis……………………………………………………………...39 2.3.2 Materials Characterization……………………………………………………41 2.3.2.1 Morphology and particle size determination …………………….……41 2.3.2.2 Crystal phase characterization using X-ray diffraction………………..42 2.3.2.3 Fourier transform infrared spectral analysis…………………………...43 2.3.2.4 Particle surface analysis……………………………………………….44 2.4 Other shapes of Fe3O4 crystals…………………………………….…………………46 2.5 Size- and facet-dependent optical properties…………………………………………47 2.6 Magnetic property of Fe3O4 crystals…………………………………………………50 2.7 Conclusion……………………………………………………………………………57

    (1) Huang, M. H.; Kumar, G. Origin and Manifestation of Semiconductor Facet Effects. J Chin Chem Soc. 2022, 69 (8), 1190-1199.
    (2) Ho, J.-Y.; Huang, M. H. Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. J. Phys. Chem. Lett. 2009, 113 (32), 14159-14164.
    (3) Lyu, L. M.; Wang, W. C.; Huang, M. H. Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structures and Their Surface Properties. Cent. Eur. J. Chem. 2010, 16 (47), 14167-14174.
    (4) Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123 (22), 13664-13671.
    (5) Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9 (44), 39086-39093.
    (6) Wu, J. K.; Lyu, L. M.; Liao, C. W.; Wang, Y. N.; Huang, M. H. Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures. Chem.‒Eur. J. 2012, 18 (45), 14473-14478.
    (7) Peng, Y.-W.; Wang, C.-P.; Kumar, G.; Hsieh, P.-L.; Hsieh, C.-M.; Huang, M. H. Formation of CsPbCl3 Cubes and Edge-Truncated Cuboids at Room Temperature. ACS Sustain. Chem. Eng. 2022, 10 (4), 1578-1584.
    (8) Huang, M. H.; Chiu, C.-Y. Achieving Polyhedral Nanocrystal Growth with Systematic Shape Control. J. Mater. Chem. A 2013, 1 (28), 8081-8092.
    (9) Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond-Level Deviations in Cu2O. Inorg. Chem. Front. 2021, 8 (18), 4200-4208.
    (10) Tan, C. S.; Chen, Y. J.; Hsia, C. F.; Huang, M. H. Facet‐Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem Asian J 2017, 12 (3), 293-297.
    (11) Hsieh, P.-L.; Madasu, M.; Hsiao, C.-H.; Peng, Y.-W.; Chen, L.-J.; Huang, M. H. Facet-Dependent and Adjacent Facet-Related Electrical Conductivity Properties of SrTiO3 Crystals. J. Phys. Chem. C 2021, 125 (18), 10051-10056.
    (12) Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28 (5), 1574-1580.
    (13) Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122 (24), 13027-13033.
    (14) Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-dependent electrical conductivity properties of Cu2O crystals. Nano Lett. 2015, 15 (3), 2155-2160.
    (15) Kumar, G.; Chen, C.-R.; Chen, B.-H.; Chen, J.-W.; Huang, M. H. Morphological Evolution of Cadmium Oxide Crystals Showing Color Changes and Facet-Dependent Conductivity Behavior. J. Mater. Chem. C 2022, 10 (33), 12125-12131.
    (16) Rivani, D. A.; Retnosari, I.; Saraswati, T. E. Influence of TiO2 Addition on The Magnetic Properties of Carbon-Based Iron Oxide Nanocomposites Synthesized Using Submerged Arc-Discharge. In IOP Conference Series: Mater. Sci. Eng.2019; IOP Publishing: Vol. 509, p 012034.
    (17) Taimoory, S. M.; Trant, J. F.; Rahdar, A.; Aliahmad, M.; Sadeghfar, F.; Hashemzaei, M. Importance of the Inter-Electrode Distance for the Electrochemical Synthesis of Magnetite Nanoparticles: Synthesis, Characterization, Computational Modelling, and Cytotoxicity. e-J. Surf. Sci. Nanotechnol. 2017, 15, 31-39.
    (18) Lei, W.; Liu, Y.; Si, X.; Xu, J.; Du, W.; Yang, J.; Zhou, T.; Lin, J. Synthesis and Magnetic Properties of Octahedral Fe3O4 Via a One-Pot Hydrothermal Route. Phys Lett A 2017, 381 (4), 314-318.
    (19) Chen, Z.; Geng, Z.; Tao, T.; Wang, Z. Shape-Controlled Synthesis of Fe3O4 Rhombic Dodecahedrons and Nanodiscs. Mater. Lett. 2014, 117, 10-13.
    (20) Li, X.; Zhang, F.; Ma, C.; Saul, E.; He, N. Green Synthesis of Uniform Magnetite (Fe3O4) Nanoparticles and Micron Cubes. J. Nanosci. Nanotechnol. 2012, 12 (3), 2939-2942.
    (21) Li, Q.; Kartikowati, C. W.; Horie, S.; Ogi, T.; Iwaki, T.; Okuyama, K. Correlation Between Particle Size/Domain Structure and Magnetic Properties of Highly Crystalline Fe3O4 Nanoparticles. Sci. Rep. 2017, 7 (1), 9894.
    (22) Gao, G.; Liu, X.; Shi, R.; Zhou, K.; Shi, Y.; Ma, R.; Takayama-Muromachi, E.; Qiu, G. Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes. Cryst. Growth Des. 2010, 10 (7), 2888-2894.
    (23) Jayanthi, S. A.; Nathan, D. M. G. T.; Jayashainy, J.; Sagayaraj, P. A Novel Hydrothermal Approach for Synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 Mesoporous Magnetic Nanoparticles. Mater. Chem. Phys. 2015, 162, 316-325.
    (24) Iida, H.; Takayanagi, K.; Nakanishi, T.; Osaka, T. Synthesis of Fe3O4 Nanoparticles with Various Sizes and Magnetic Properties by Controlled Hydrolysis. J. Colloid Interface Sci. 2007, 314 (1), 274-280.
    (25) Taufiq, A.; Yuliantika, D.; Hariyanto, Y. A.; Hidayat, A.; Bahtiar, S.; Mufti, N.; Hidayat, N. Effect of Template on Structural and Band Gap Behaviors of Magnetite Nanoparticles. J Phys Conf Ser, 2018; IOP Publishing: Vol. 1093, p 012020.
    (26) Rani, S.; Varma, G. D. Superparamagnetism and Metamagnetic Transition in Fe3O4 Nanoparticles Synthesized Via Co-precipitation Method at Different pH. Physica B Condens. Matter 2015, 472, 66-77.
    (27) Hu, C.; Gao, Z.; Yang, X. Fabrication and Magnetic Properties of Fe3O4 Octahedra. Chem. Phys. Lett. 2006, 429 (4-6), 513-517.
    (28) Chen, L.; Zhou, Q.; Xiong, Q.; Li, W.; Liu, J.; Yang, X. Shape-Evolution and Growth Mechanism of Fe3O4 Polyhedrons. Adv. Mater. Sci. Eng. 2015, 2015.
    (28) Chen, Z.; Geng, Z.; Tao, T.; Wang, Z. Shape-Controlled Synthesis of Fe3O4 Rhombic Dodecahedrons and Nanodiscs. Mater. Lett. 2014, 117, 10-13.
    (29) Nalbandian, L.; Patrikiadou, E.; Zaspalis, V.; Patrikidou, A.; Hatzidaki, E.; N Papandreou, C. Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Characterization and Proteins Conjugation. Curr Nanosci 2016, 12 (4), 455-468.
    (30) Sobhanardakani, S.; Jafari, A.; Zandipak, R.; Meidanchi, A. Removal of Heavy Metal (Hg (II) and Cr (VI)) Ions from Aqueous Solutions Using Fe2O3@ SiO2 thin films as a Novel Adsorbent. Process Saf Environ Prot 2018, 120, 348-357.
    (31) Anderson, J.; Kuhn, M.; Diebold, U. Epitaxially Grown Fe3O4 Thin Films: an XPS study. Surf. Sci. Spectra 1996, 4 (3), 266-272.
    (32) Wilson, D.; Langell, M. XPS Analysis of Oleylamine/Oleic Acid Capped Fe3O4 Nanoparticles as a Function of Temperature. Appl. Surf. Sci. 2014, 303, 6-13.
    (33) El Ghandoor, H.; Zidan, H.; Khalil, M. M.; Ismail, M. Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles. Int. J. Electrochem. Sci 2012, 7 (6), 5734-5745.
    (34) Caruntu, D.; Caruntu, G.; O’Connor, C. J. Magnetic Properties of Variable-Sized Fe3O4 Nanoparticles Synthesized from Non-Aqueous Homogeneous Solutions of Polyols. J. Phys. D 2007, 40 (19), 5801.
    (35) Ozkaya, T.; Toprak, M. S.; Baykal, A.; Kavas, H.; Köseoğlu, Y.; Aktaş, B. Synthesis of Fe3O4 Nanoparticles at 100 C and Its Magnetic Characterization. J. Alloys Compd. 2009, 472 (1-2), 18-23.
    (36) Saragi, T.; Sinaga, H. D.; Rahmi, F.; Pramesti, G. A.; Sugiarto, A.; Therigan, A.; Syakir, N.; Hidayat, S.; Risdiana, R. Blocking Temperature of Magnetite Nanoparticles Fe3O4 Encapsulated Silicon Dioxide SiO2. Key Eng. Mater. 2020; Trans Tech Publ: Vol. 855, pp 172-176.
    (37) Gossuin, Y.; Gillis, P.; Hocq, A.; Vuong, Q. L.; Roch, A. Magnetic Resonance Relaxation Properties of Superparamagnetic Particles. Wiley Interdisciplinary Reviews: Nanomedicine. 2009, 1 (3), 299-310.
    (38) Roch, A.; Muller, R. N.; Gillis, P. Theory of Proton Relaxation Induced by Superparamagnetic Particles. J. Chem. Phys. 1999, 110 (11), 5403-5411.
    (39) Kolhatkar, A. G.; Jamison, A. C.; Litvinov, D.; Willson, R. C.; Lee, T. R. Tuning The Magnetic Properties of Nanoparticles. Int. J. Mol. Sci. 2013, 14 (8), 15977-16009.
    (40) Toby, B. H.; Von Dreele, R. B. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J Appl Crystallogr. 2013, 46 (2), 544-549.
    (41) March, S. R. Superparamagnetic nanoparticles and the separation problem.

    QR CODE