簡易檢索 / 詳目顯示

研究生: 吳順達
Shuen-Ta Wu
論文名稱: 射頻混波器的設計與特性分析
RF Mixer Design and Characterization
指導教授: 徐碩鴻
Shuo-Hung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 93
中文關鍵詞: 低電壓低功率混波器接收機變壓器主動平衡器
外文關鍵詞: low voltage, lower power, mixer, receiver, transformer, active balun
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線通訊系統的發展趨勢,往大資料量、高資料傳輸速率及低功率消耗發展已經是無可避免的趨勢。為了達到這個目標,最近提出的超寬頻系統已經獲得許多青睞。因此,在系統裡的射頻電路方塊必須滿足此寬頻系統的設計需求,但這在電路設計方面還有許多的挑戰。
    此篇論文主要針對在使用CMOS與BiCMOS技術來分別應用於窄頻與超寬頻混波器的設計。論文首先是介紹接收機與混波器的基本理論與重要的設計參數,也討論了不同接收機與混波器的優點及缺點。接著定量分析詳細的討論了混波器的操作原理及設計參數的取捨。在窄頻混波器方面,共設計兩個分別應用於5.2 GHz與2.4 GHz的混波器。在第一個窄頻混波器設計方面,藉由使用一個電壓器,可以將供應電壓降低到1.7 V,而功率消耗則可到8.24 mW。在第二個窄頻混波器,我們提出了一個主動式平衡器將差動輸出訊號結合為單一訊號。量測結果顯示出與模擬間的只有些許差異。此外,基於上述兩個混波器,我們設計了兩個超寬頻混波器,藉由使用多級LC帶通濾波器架構的輸入匹配電路,可有效的達到所需的寬頻匹配。


    The trends for developing high data capacity, high data transmitting rate and low power consumption wireless communication systems are inevitable. To purpose this goal, the recent proposed ultra-wideband (UWB) standards have attracted much interest. The individual RF front-end circuit blocks in the systems are therefore needed to fulfill the wideband operation requirement, which is still a challenge.
    The main focus of this work is to design various mixers based on currently available CMOS and BiCMOS technologies for both narrow-band and UWB applications. The fundamentals and important design parameters of the receivers and mixers are first introduced, and the advantages and disadvantages of different receiver structures and mixer topologies are discussed. The mixer operation principles and design trade offs are described in detail by analytical equations. Two narrow-band mixers are designed at 5.2 GHz and 2.4 GHz, respectively. By using an on-chip transformer, the supply voltage of the first narrow-band mixer can be decreased to as low as 1.7V resulting in an overall low power consumption of 8.24 mW. In the second narrow-band mixer design, a new active balun is proposed to combine the output differential signal to a single-ended one. The measurement results show a close agreement with the simulated results. In addition, two ultra-wideband mixers are designed based on the narrow-band mixers. We successfully design a multi-stage LC band-pass filter as the input matching network to achieve a perfect wideband matching in these two circuits.

    Abstract i Acknowledgements ii Contents iii List of Figures vi List of Tables x Chapter I Introduction 1 I.1 Recent Trends in Wireless Communication Systems 1 I.2 Thesis Organization 4 Chapter II Basic Concepts in RF Receiver Design 6 II.1 Receiver Fundamentals 6 II.1.1 Sensitivity and Noise Figure 6 II.1.2 Selectivity 9 II.1.3 Effects of Nonlinearity 10 II.1.3.1 Gain Compression 11 II.1.3.2 Desensitization and Blocking 12 II.1.3.3 Intermodulation 14 II.1.3.4 Dynamic Range 18 II.2 Receiver Architectures 19 II.2.1 Heterodyne Receivers 20 II.2.2 Homodyne (or Direct-Conversion or Zero-IF) Receivers 23 II.2.3 Image-Reject Receivers 29 II.2.4 Low-IF Receivers 30 II.3 Conclusion 32 Chapter III Mixer Design Fundamental 33 III.1 Mixer Fundamentals 33 III.2 Mixer classification 34 III.3 Mixer Conversion Gain Analysis 37 III.4 Single-Sideband and Double-Sideband Noise 41 III.5 Mixer Linearity Analysis 44 III.6 Conclusion 46 Chapter IV Narrow-Band Mixer Design 47 IV.1 Low-Power Transformer-Based Mixer Design for 5.2 GHz Application (TSMC 0.35□m SiGe Process) 47 IV.1.1 Motivation 48 IV.1.2 Circuit topology of the mixer 48 IV.1.3 Design Flow Chart 54 IV.1.4 Simulation and Measurement results 54 IV.2 Current-Bleeding Mixer Design with Output Active Balun for 2.4 GHz Application (TSMC 0.25□m CMOS Process) 63 IV.2.1 Circuit topology of the mixer 63 IV.2.2 Simulation and Measurement results 66 IV.3 Conclusion 72 Chapter V Wide-Band Mixer Design 73 V.1 Low-Voltage Transformer-Based UWB Mixer Design (TSMC 0.35□m SiGe Process) 73 V.1.1 Circuit Topology of the Mixer 73 V.1.2 Simulation results 75 V.2 CMOS UWB Mixer Design (TSMC 0.18□m CMOS Process) 81 V.2.1 Circuit Topology of the Mixer 81 V.2.2 Simulation Results 83 Chapter VI Conclusion 90 References 92


    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    Valentino Liberali, Gabriella Trucco; “CMOS Analog Design for Wireless Communication.”

    D. C. Cox. “Wireless personal communications: What is it?” IEEE Personal Communications Magazine, Vol. 2, April 1995, pp. 20-35.

    Pieter W. Hooijmans, “RF Front End Application and Technology Trends,” Philips Research Laboratory.

    Tajinder Manku, Galen Beck, and Etty J. Shin. A low-voltage design technique for RF integrated circuits. IEEE Transactions on Circuits and Systems-II, 45(10):1408-1413, October1998.

    Qiuting Huang, Francesco Piazza, Paolo Orsatti, and Tatsuya Ohguro. The impact of scaling down to deep submicron on CMOS RF circuits. IEEE Journal of Solid State Circuits, 33(7):1023-1036, July1998.

    J. Fenk, “RF-trends in mobile communication,” in Proc. European Solid-State Circ. Conf. (ESSCIRC), Estoril, Portugal, Sept. 2003, pp. 21-27.

    B. Razavi, RF Microelectronics, Prentice-Hall, Upper Saddle River, 1998.

    A. Rofougaran, G. Chang, J. Rael, J. Chang, M. Rofougaran, P. Chang, M. Djafari, J. Min, E. Roth, A. Abidi, H. Samueli, “A Single-Chip 900-MHz Spread- Spectrum Wireless Transceiver in 1-um CMOS - Part II: Receiver Design,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 535-547, Apr. 1998.

    S. Mattisson, Technology Directions In Cellular Receivers, n.d.

    Jan Crols and Michael Steyaert, “CMOS Wireless Transceiver Design,” Kluwer Academic Publishers, 1995.

    Dennis Ma, ”RF Receiver Systems and Circuits,” ECE1371 term paper.

    S. Mattisson, Technology Directions In Cellular Receivers, n.d.

    H. Darabi, A. Abidi, “A 4.5mW 900-MHz CMOS Receiver for Wireless Paging”, IEEE Journal of Solid-State Circuits, vol. 35, pp. 1085-1096, Aug. 2000.

    B. Razavi, “Design consideration for direct-conversion receivers,” IEEE Trans. Circuits Syst.Ⅱ, vol. 44, pp. 428-435, June. 1997.

    J. Crols, and M. Steyaert, “A Single-Chip 900MHz CMOS Receiver Front-End with a High-Performance Low-IF Topology,” IEEE Journal of Solid-State Circuits, Vol. 30, pp.1483-1492, December 1995.

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    P. R. Gray and R. G. Meyer, “Analysis and design of Analog Integrated Circuits,” Wiley, New York, 4th edition, 1998.

    K. L. Fong, R. Meyer, “Monolithic RF Active Mixer Design,” IEEE Trans. on Circuits and Systems—II: Analog and Digital Signal Processing, vol. 46, pp. 231-239, March 1999.

    Li, Q.; Yuan, J.S.; “Linearity analysis and design optimization for 0.18 μm CMOS RF mixer,” Circuits, Devices and Systems, IEE Proceedings, Volume 149, Issue 2, April 2002 Page(s):112 – 118.

    Salem, R.F.; Galal, S.H.; Tawfik, M.S.; Ragaie, H.F.; “A new highly linear CMOS mixer suitable for deep submicron technologies,” 9th International Conference on Electronics, Circuits and Systems, Volume 1, 15-18 Sept. 2002 Page(s):81 - 84 vol.1

    Guillermo Gonzales, “Microwave Transistor Amplifier: Analysis and Design,” 2nd Edition, Prentice-Hall, Inc., 1997.

    Peter Ashburn, “SiGe Heterojunction Bipolar Transistors,” WILEY, 2003.

    Long, J.R,; “A low-voltage 5.1-5.8-GHz image-reject downconverter RF IC,” IEEE Journal of Solid-State Circuits, Volume: 35 , Issue: 9 , Sept. 2000, Pages:1320 - 1328

    Koutsoyannopoulos, Y.K.; Papananos, Y.; “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Volume 47, Issue 8, Aug. 2000 Page(s):699 - 713

    Long, J.R.; “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, Volume 35, Issue 9, Sept. 2000 Page(s):1368 – 138

    Italia, A.; Ragonese, E.; Girlando, G.; Palmisano, G.; “A 5-GHz monolithic silicon bipolar down-converter with a 3.2-dB noise figure,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium,, 8-10, June 2003, Page(s): 453 -456

    Hackl, S.; Meister, T.F.; Wurzer, M.; Knapp, H.; Aufinger, K.; Treitinger, L.; Scholtz, A.L.; “Low-noise, low-power monolithically integrated active 20 GHz mixer in SiGe technology,” Electronics Letters , Volume: 37, Issue: 1, Jan. 2001, Page(s):36 - 37

    Komurasaki, H.; Sato, H.; Sasaki, N.; Miki, T.; “A 2-V 1.9-GHz Si down-conversion mixer with an LC phase shifter,” IEEE Journal of Solid-State Circuits, Volume: 33, Issue: 5, May 1998, Page(s): 812 -815

    Tuan-Anh Phan; Chang-Wan Kim; Min-Suk Kang; Sang-Gug Lee; Chun-Deok Su; “Low noise and high gain CMOS down conversion mixer,” International Conference on Communications, Circuits and Systems, ICCCAS 2004. Volume 2, 27-29 June 2004 Page(s):1191 - 1194 Vol.2

    Kivekas, K.; Parssinen, A.; Jussila, J.; Ryynanen, J.; Halonen, K.; “Design of low-voltage active mixer for direct conversion receivers,” IEEE International Symposium on Circuits and Systems, ISCAS 2001. Volume 4, 6-9 May 2001 Page(s):382 - 385 vol. 4

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    Q. Li, et 81, “Linearity Analysis and Design Optimization for 0.18 □m CMOS RF Mixer,” IEE Proceedings of Circuits, Devices and Systems, Vol. 149, Issue 2, April 2002.

    Kawashima, M.; Nakagawa, T.; Araki, K.; “A novel broadband active balun,” Microwave Conference, 2003. 33rd European. Volume 2, 7-9 Oct. 2003 Page(s):495 - 498 vol.2

    Chih-Chun Tang; Wen-Shih Lu; Lan-Da Van; Wu-Shiung Feng; “A 2.4-GHz CMOS down-conversion doubly balanced mixer with low supply voltage,” IEEE International Symposium on Circuits and Systems, 2001 ISCAS. The 2001 Volume 4, 6-9 May 2001 Page(s):794 - 797 vol. 4

    Ryynanen, J.; Kivekas, K.; Jussila, J.; Parssinen, A.; Halonen, K.A.I.; “A dual-band RF front-end for WCDMA and GSM applications,” IEEE Journal of Solid-State Circuits, Volume 36, Issue 8, Aug. 2001 Page(s):1198 - 1204

    Ickjin Kwon; Kwyro Lee; “An integrated low power highly linear 2.4-GHz CMOS receiver front-end based on current amplification and mixing,” IEEE Microwave and Wireless Components Letters, Volume 15, Issue 1, Jan. 2005 Page(s):36 - 38

    http://www.ieee802.0rg.15/pub/TG3a.html

    Ismail, A.; Abidi, A.A.; “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE Journal of Solid-State Circuits, Volume 39, Issue 12, Dec. 2004, Page(s):2269 - 2277

    Bevilacqua, A.; Niknejad, A.M.; “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers,” IEEE Journal of Solid-State Circuits, Volume 39, Issue 12, Dec. 2004, Page(s):2259 - 2268

    Ming-Da Tsai; Huei Wang; “A 0.3-25-GHz ultra-wideband mixer using commercial 0.18mm CMOS technology,” IEEE Microwave and Wireless Components Letters, Volume 14, Issue 11, Nov. 2004, Page(s):522 - 524

    Anh- Tuan Phan, Chang- Wan Kim, Min- Suk Kang, Sang- Gug Lee; “A High Performance CMOS Direct Down Conversion Mixer For UWB System,” Samsung Advanced Institute of Technology.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE