簡易檢索 / 詳目顯示

研究生: 劉耀禎
論文名稱: 植物中鹼性及富含半胱胺酸之蛋白質的功能和結構特性分析
Functional and Structural Characterization of Highly Basic and Cysteine-rich Proteins from Plant
指導教授: 呂平江教授
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 108
中文關鍵詞: 富含半胱胺酸防禦非專一性脂質運輸蛋白質雙硫鍵防禦素抗蟲澱粉酶
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物發展出各種不同的防衛策略來抵禦各種不同的病蟲害,有趣的是許多小分子量、鹼性及富含半胱胺酸(cysteine-rich)的蛋白質都和這些防禦機制有關,這些植物防禦蛋白包括hevein, thionins, knottin-like peptides,植物非專一性脂質運輸蛋白質(plant non-specific lipid transfer proteins, nsLTPs)和植物防禦素(plant defensins),他們的結構含有2-6個雙硫鍵,形成一個緊密的折疊方式,其中,非專一性脂質運輸蛋白質和植物防禦素都有八個高度保留(conserved)的半胱胺酸,形成四個雙硫鍵。
    非專一性脂質運輸蛋白質最為人所熟知的是能和各種脂質分子結合與試管內(in vitro)實驗中細胞膜之間運送脂質分子的能力,他們還被認為和其他的生物功能有關,包括病原菌的防禦、植物角質的生成和植物抵抗乾旱溫度變化之類的環境壓力的機制。非專一性脂質運輸蛋白質依據分子量,可以分成兩個不同類型,第一型(nsLTP1)的分子量約九千道耳吞(9kDa),第二型(nsLTP2)的分子量約七千道耳吞(7kDa),我們從稻米的種子中純化出第一和第二型的非專一性脂質運輸蛋白質,並進行鑑別、脂質運輸和脂質結合的特性分析。
    植物防禦素最有名的則是他們有廣泛抵抗植物病原菌的能力,他們是一個鹼性、富含半胱胺酸、45到54個胺基酸大小的多肽族群,可以在各種不同植物中,包括小麥、大麥、豌豆、蘿蔔、高粱和綠豆中純化出來,除了可以抗菌外,植物防禦素也有其他的生物功能,包括抑制alpha-澱粉酶(alpha-amylase)、抑制胰蛋白酶(trypsin)、抑制鈉離子通道(sodium channel)和無細胞系統(cell-free system)中抑制蛋白質合成(protein synthesis)的各種不同活性。最近有個綠豆防禦素VrD1被報導在試管內(in vitro)實驗中具有抵抗豆象(bruchid)的抗蟲能力,我們利用核磁共振(Nuclear Magnetic Resonance, NMR)解出VrD1的三級結構,並確認它有抑制麵包蟲(Tenebrio molitor) alpha-澱粉酶的活性,這顯示VrD1可能是藉由抑制澱粉酶的機制達到抗蟲的功能,我們並比較序列和結構上的不同,並透過電腦模擬來討論VrD1和alpha-澱粉酶的可能的結合模式,這樣的結果將有助於改進VrD1的抗蟲效果。


    Plants have developed various defense strategies against insect, bacterial and fungal attack. Interestingly, many small, highly basic and cysteine-rich proteins are involved in the defense mechanisms. These defense related proteins include hevein, thionins, knottin-like peptides, plant non-specific lipid transfer proteins (nsLTPs) and plant defensins. All of them adopt a compact fold stabilized by 2-6 disulfide bonds. Among these defense proteins, both nsLTPs and plant defensins have eight conserved cysteines forming four disulfide bonds.
    NsLTPs are well known for their ability to bind a variety of lipid molecules and catalyze the transfer of lipids between membranes in vitro. They are also involved in other biological functions such as involvement in defense against pathogens, biosynthesis of cutin, and managing abiotic stress conditions imparted by temperature and drought situation. NsLTPs are subdivided into two different isoforms with molecular mass of 9kDa (nsLTP1) and 7kDa (nsLTP2). We have isolated nsLTP1 and nsLTP2 from rice seeds. Here, the purification, characterization, lipid-transfer and lipid-binding of nsLTPs are reported.
    Plant defensins are well known for their ability to exhibit antifungal activity against a broad range of fungi including various plant pathogens. They are a family of cysteine-rich, basic peptides of 45 to 54 amino acids isolated from many plants including wheat, barley, pea, radish, sorghum and mung bean. Plant defensins also have additional biological activities including inhibition of alpha-amylase, of trypsin, of sodium channel and of protein synthesis in cell-free system. Recently, an insecticidal plant defensin designated VrD1 was reported exhibiting in vitro insect-resistant activity against bruchid. Here we report the three-dimensional structure of VrD1 as determined by NMR spectroscopy. Furthermore, VrD1 was confirmed to inhibit Tenebrio molitor alpha-amylase implying that VrD1 exhibited insecticidal activity through inhibition of alpha-amylase. Computational docking experiments were used to study the interactions between VrD1 and insect alpha-amylase, and these results provide useful interaction information that may improve the insecticidal activity of VrD1.

    Part I: Non-specific Lipid Transfer Protein, nsLTP 1. Abstract ......................................3 2. Introduction...................................5 3. Material and Methods 3.1. Purification of rice nsLTPs..................7 3.2. Amino acid sequencing........................8 3.3. Circular dichroism experiments...............9 3.4. Lipid transfer assay.........................9 3.5. Lipid binding assay.........................10 4. Results and Discussion 4.1. Sequencing of rice nsLTP2...................12 4.2. Disulfide bond pattern13....................13 4.3. Secondary structure of nsLTP2...............14 4.4. Sequence comparison of rice nsLTP2..........14 4.5. Stability comparison of nsLTP2 and nsLTP1...16 4.6. Lipid transfer activity.....................17 4.7. Lipid binding assay.........................17 5. Conclusion....................................18 6. Attached Tables and Figures...................23 7. Reference.....................................48 Part II: Plant Defensin, VrD1 1. Abstract.....................................56 2. Introduction.................................58 3. Material and Methods 3.1. NMR experiments and structure calculation...61 3.2. Assays of enzyme activity...................62 3.3. Molecular docking...........................63 4. Results and Discussion 4.1. Secondary structure from NMR data...........65 4.2. Solution structure calculations.............65 4.3. VrD1 structure..............................66 4.4. 310 helix of VrD1...........................67 4.5. Assays of enzyme activity...................68 4.6. Relationship between structure and insect alpha-amylase inhibitory activity......................68 4.7. Three known inhibition mode for insect alpha-amylase..........................................69 4.8. Mode of Binding of Plant Defensins to Insect alpha-amylase..........................................70 5. Conclusion....................................72 6. Attached Tables and Figures...................74 7. Reference.....................................99

    Part I:
    1. Douliez, J. P., Michon, T., Elmorjani, K., and Marion, D. (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels, J Cereal Sci 32, 1-20.
    2. Douliez, J. P., Jegou, S., Pato, C., Larre, C., Molle, D., and Marion, D. (2001) Identification of a new form of lipid transfer protein (LTP1) in wheat seeds, J Agric Food Chem 49, 1805-8.
    3. Kader, J. C. (1996) Lipid-transfer proteins in plants, Annu Rev Plant Physiol Plant Mol Biol 47, 627-54.
    4. Lindorff-Larsen, K., and Winther, J. R. (2001) Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases, FEBS Lett 488, 145-8.
    5. Douliez, J. P., Pato, C., Rabesona, H., Molle, D., and Marion, D. (2001) Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2, Eur J Biochem 268, 1400-3.
    6. Douliez, J. P., Jegou, S., Pato, C., Molle, D., Tran, V., and Marion, D. (2001) Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling, Eur J Biochem 268, 384-8.
    7. Guerbette, F., Grosbois, M., Jolliot-Croquin, A., Kader, J. C., and Zachowski, A. (1999) Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants, Biochemistry 38, 14131-7.
    8. Subirade, M., Salesse, C., Marion, D., and Pezolet, M. (1995) Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy, Biophys J 69, 974-88.
    9. Garcia-Garrido, J. M., Menossi, M., Puigdomenech, P., Martinez-Izquierdo, J. A., and Delseny, M. (1998) Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice, FEBS Lett 428, 193-9.
    10. Lerche, M. H., Kragelund, B. B., Bech, L. M., and Poulsen, F. M. (1997) Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands, Structure 5, 291-306.
    11. Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y., and Suh, S. W. (1998) Rice non-specific lipid transfer protein: the 1.6 Å crystal structure in the unliganded state reveals a small hydrophobic cavity, J Mol Biol 276, 437-48.
    12. Heinemann, B., Andersen, K. V., Nielsen, P. R., Bech, L. M., and Poulsen, F. M. (1996) Structure in solution of a four-helix lipid binding protein, Protein Sci 5, 13-23.
    13. Han, G. W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H., Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Choe, J., Lim, D., Moon, H. J., and Suh, S. W. (2001) Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography, J Mol Biol 308, 263-78.
    14. Poznanski, J., Sodano, P., Suh, S. W., Lee, J. Y., Ptak, M., and Vovelle, F. (1999) Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins, Eur J Biochem 259, 692-708.
    15. Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K., and Suh, S. W. (1995) High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings, Structure 3, 189-99.
    16. Sodano, P., Caille, A., Sy, D., de Person, G., Marion, D., and Ptak, M. (1997) 1H NMR and fluorescence studies of the complexation of DMPG by wheat non-specific lipid transfer protein. Global fold of the complex, FEBS Lett 416, 130-4.
    17. Cheng, H. C., Cheng, P. T., Peng, P., Lyu, P. C., and Sun, Y. J. (2004) Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa, Protein Sci 13, 2304-15.
    18. Pons, J. L., de Lamotte, F., Gautier, M. F., and Delsuc, M. A. (2003) Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein, J Biol Chem 278, 14249-56.
    19. Zachowski, A., Guerbette, F., Grosbois, M., Jolliot-Croquin, A., and Kader, J. C. (1998) Characterisation of acyl binding by a plant lipid-transfer protein, Eur J Biochem 257, 443-8.
    20. Douliez, J., Michon, T., and Marion, D. (2000) Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP1), Biochim Biophys Acta 1467, 65-72.
    21. Jones, B. L., and Marinac, L. A. (2000) Purification and partial characterization of a second cysteine proteinase inhibitor from ungerminated barley (Hordeum vulgare L.), J Agric Food Chem 48, 257-64.
    22. Conti, A., Fortunato, D., Ortolani, C., Giuffrida, M. G., Pravettoni, V., Napolitano, L., Farioli, L., Perono Garoffo, L., Trambaioli, C., and Pastorello, E. A. (2001) Determination of the primary structure of two lipid transfer proteins from apricot (Prunus armeniaca), J Chromatogr B Biomed Sci Appl 756, 123-9.
    23. Liu, Y. J., Samuel, D., Lin, C. H., and Lyu, P. C. (2002) Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice (Oryza sativa), Biochem Biophys Res Commun 294, 535-40.
    24. Yu, Y. G., Chung, C. H., Fowler, A., and Suh, S. W. (1988) Amino acid sequence of a probable amylase/protease inhibitor from rice seeds, Arch Biochem Biophys 265, 466-75.
    25. Ostergaard, J., Hojrup, P., and Knudsen, J. (1995) Amino acid sequences of three acyl-binding/lipid-transfer proteins from rape seedlings, Biochim Biophys Acta 1254, 169-79.
    26. Brandts, J. F., and Kaplan, L. J. (1973) Derivative spectroscopy applied to tyrosyl chromophores. Studies on ribonuclease, lima bean inhibitors, insulin, and pancreatic trypsin inhibitor, Biochemistry 12, 2011-24.
    27. Zhou, H. X., Lyu, P., Wemmer, D. E., and Kallenbach, N. R. (1994) Alpha helix capping in synthetic model peptides by reciprocal side chain-main chain interactions: evidence for an N terminal "capping box", Proteins 18, 1-7.
    28. van Paridon, P. A., Gadella, T. W., Jr., Somerharju, P. J., and Wirtz, K. W. (1988) Properties of the binding sites for the sn-1 and sn-2 acyl chains on the phosphatidylinositol transfer protein from bovine brain, Biochemistry 27, 6208-14.
    29. Jayaraman, G., Wu, C. W., Liu, Y. J., Chien, K. Y., Fang, J. C., and Lyu, P. C. (2000) Binding of a de novo designed peptide to specific glycosaminoglycans, FEBS Lett 482, 154-8.
    30. Samuel, D., Liu, Y. J., Cheng, C. S., and Lyu, P. C. (2002) Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa), J Biol Chem 277, 35267-73.
    31. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res 22, 4673-80.
    32. DiscoveryStudio. (2002), Accelrys Inc, San Diego, CA.

    Part II:
    1. Colilla, F. J., Rocher, A., and Mendez, E. (1990) gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm, FEBS Lett 270, 191-4.
    2. Mendez, E., Moreno, A., Colilla, F., Pelaez, F., Limas, G. G., Mendez, R., Soriano, F., Salinas, M., and de Haro, C. (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm, Eur J Biochem 194, 533-9.
    3. Bloch, C., Jr., and Richardson, M. (1991) A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat γ-purothionins, FEBS Lett 279, 101-4.
    4. Almeida, M. S., Cabral, K. M., Zingali, R. B., and Kurtenbach, E. (2000) Characterization of two novel defense peptides from pea (Pisum sativum) seeds, Arch Biochem Biophys 378, 278-86.
    5. Terras, F. R., Schoofs, H. M., De Bolle, M. F., Van Leuven, F., Rees, S. B., Vanderleyden, J., Cammue, B. P., and Broekaert, W. F. (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds, J Biol Chem 267, 15301-9.
    6. Chen, K. C., Lin, C. Y., Kuan, C. C., Sung, H. Y., and Chen, C. S. (2002) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid, J Agric Food Chem 50, 7258-63.
    7. Thomma, B. P., Cammue, B. P., and Thevissen, K. (2002) Plant defensins, Planta 216, 193-202.
    8. Broekaert, W. F., Terras, F. R., Cammue, B. P., and Osborn, R. W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system, Plant Physiol 108, 1353-8.
    9. Zhang, N., Jones, B.L., and Tao, H.P. (1997) Purification and Characterization of a New Class of Insect □-amylase Inhibitors from Barley, Cereal Chemistry 74, 119-122.
    10. Wijaya, R., Neumann, G. M., Condron, R., Hughes, A. B., and Polya, G. M. (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin, Plant Science 159, 243-255.
    11. Melo, F. R., Rigden, D. J., Franco, O. L., Mello, L. V., Ary, M. B., Grossi de Sa, M. F., and Bloch, C., Jr. (2002) Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking, Proteins 48, 311-9.
    12. Kushmerick, C., de Souza Castro, M., Santos Cruz, J., Bloch, C., Jr., and Beirao, P. S. (1998) Functional and structural features of γ-zeathionins, a new class of sodium channel blockers, FEBS Lett 440, 302-6.
    13. Mendez, E., Rocher, A., Calero, M., Girbes, T., Citores, L., and Soriano, F. (1996) Primary structure of omega-hordothionin, a member of a novel family of thionins from barley endosperm, and its inhibition of protein synthesis in eukaryotic and prokaryotic cell-free systems, Eur J Biochem 239, 67-73.
    14. Bruix, M., Jimenez, M. A., Santoro, J., Gonzalez, C., Colilla, F. J., Mendez, E., and Rico, M. (1993) Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins, Biochemistry 32, 715-24.
    15. Fant, F., Vranken, W. F., and Borremans, F. A. (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance, Proteins 37, 388-403.
    16. Fant, F., Vranken, W., Broekaert, W., and Borremans, F. (1998) Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR, J Mol Biol 279, 257-70.
    17. Lay, F. T., Schirra, H. J., Scanlon, M. J., Anderson, M. A., and Craik, D. J. (2003) The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP, J Mol Biol 325, 175-88.
    18. Almeida, M. S., Cabral, K. M., Kurtenbach, E., Almeida, F. C., and Valente, A. P. (2002) Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action, J Mol Biol 315, 749-57.
    19. Janssen, B. J., Schirra, H. J., Lay, F. T., Anderson, M. A., and Craik, D. J. (2003) Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds, Biochemistry 42, 8214-22.
    20. Cornet, B., Bonmatin, J. M., Hetru, C., Hoffmann, J. A., Ptak, M., and Vovelle, F. (1995) Refined three-dimensional solution structure of insect defensin A, Structure 3, 435-48.
    21. Landon, C., Sodano, P., Hetru, C., Hoffmann, J., and Ptak, M. (1997) Solution structure of drosomycin, the first inducible antifungal protein from insects, Protein Sci 6, 1878-84.
    22. Bontems, F., Roumestand, C., Boyot, P., Gilquin, B., Doljansky, Y., Menez, A., and Toma, F. (1991) Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR. Charybdotoxin possesses a structural motif found in other scorpion toxins, Eur J Biochem 196, 19-28.
    23. Caldwell, J. E., Abildgaard, F., Dzakula, Z., Ming, D., Hellekant, G., and Markley, J. L. (1998) Solution structure of the thermostable sweet-tasting protein brazzein, Nat Struct Biol 5, 427-31.
    24. Chen, J. J., Chen, G. H., Hsu, H. C., Li, S. S., and Chen, C. S. (2004) Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris, J Agric Food Chem 52, 2256-61.
    25. Osborn, R. W., De Samblanx, G. W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S. B., and Broekaert, W. F. (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae, FEBS Lett 368, 257-62.
    26. Franco, O. L., Rigden, D. J., Melo, F. R., and Grossi-De-Sa, M. F. (2002) Plant □-amylase inhibitors and their interaction with insect □-amylases, Eur J Biochem 269, 397-412.
    27. Pereira, P. J., Lozanov, V., Patthy, A., Huber, R., Bode, W., Pongor, S., and Strobl, S. (1999) Specific inhibition of insect □-amylases: yellow meal worm □-amylase in complex with the amaranth □-amylase inhibitor at 2.0 Å resolution, Structure Fold Des 7, 1079-88.
    28. Nahoum, V., Farisei, F., Le-Berre-Anton, V., Egloff, M. P., Rouge, P., Poerio, E., and Payan, F. (1999) A plant-seed inhibitor of two classes of alpha-amylases: X-ray analysis of Tenebrio molitor larvae □-amylase in complex with the bean Phaseolus vulgaris inhibitor, Acta Crystallogr D Biol Crystallogr 55 ( Pt 1), 360-2.
    29. Strobl, S., Maskos, K., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) A novel strategy for inhibition of □-amylases: yellow meal worm □-amylase in complex with the Ragi bifunctional inhibitor at 2.5 Å resolution, Structure 6, 911-21.
    30. Huber, R., Kukla, D., Bode, W., Schwager, P., Bartels, K., Deisenhofer, J., and Steigemann, W. (1974) Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 Å resolution, J Mol Biol 89, 73-101.
    31. Tsunogae, Y., Tanaka, I., Yamane, T., Kikkawa, J., Ashida, T., Ishikawa, C., Watanabe, K., Nakamura, S., and Takahashi, K. (1986) Structure of the trypsin-binding domain of Bowman-Birk type protease inhibitor and its interaction with trypsin, J Biochem (Tokyo) 100, 1637-46.
    32. Bode, W., Greyling, H. J., Huber, R., Otlewski, J., and Wilusz, T. (1989) The refined 2.0 Å X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes, FEBS Lett 242, 285-92.
    33. Lu, S., Deng, P., Liu, X., Luo, J., Han, R., Gu, X., Liang, S., Wang, X., Li, F., Lozanov, V., Patthy, A., and Pongor, S. (1999) Solution structure of the major □-amylase inhibitor of the crop plant amaranth, J Biol Chem 274, 20473-8.
    34. Goddard, T. D., and Kneller, D. G. (1999) SPARKY, 3rd ed., University of California, San Francisco.
    35. Pardi, A., Billeter, M., and Wuthrich, K. (1984) Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN□ for identification of helical secondary structure, J Mol Biol 180, 741-51.
    36. Brunger, A. T. (1992) X-PLOR Software Manual, Version 3.1, Yale University, New Haven, CT.
    37. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR, J Biomol NMR 8, 477-86.
    38. Maria, L. S., Kinga, L., Marta, K., and Bela, S. (2001) A comparative study of the conformational stabilities of trypsin and □-chymotrypsin, Acta Biologica Szegediensis 45, 43-49.
    39. Strobl, S., Gomis-Ruth, F. X., Maskos, K., Frank, G., Huber, R., and Glockshuber, R. (1997) The □-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis, FEBS Lett 409, 109-14.
    40. Schneidman-Duhovny, D., Inbar, Y., Polak, V., Shatsky, M., Halperin, I., Benyamini, H., Barzilai, A., Dror, O., Haspel, N., Nussinov, R., and Wolfson, H. J. (2003) Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking, Proteins 52, 107-12.
    41. Strobl, S., Maskos, K., Betz, M., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) Crystal structure of yellow meal worm □-amylase at 1.64 Å resolution, J Mol Biol 278, 617-28.
    42. Khurana, S., Sanli, G., Powers, D. B., Anderson, S., and Blaber, M. (2000) Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases, Proteins 39, 68-75.
    43. Jones, S., and Thornton, J. M. (1996) Principles of protein-protein interactions, Proc Natl Acad Sci U S A 93, 13-20.
    44. Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, Protein Eng 8, 127-34.
    45. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley-Interscience, New York.
    46. Carlini, C. R., and Grossi-de-Sa, M. F. (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides, Toxicon 40, 1515-39.
    47. Shade, R. E., Schroeder, H. E., Pueyo, J. J., Tabe, L. M., Murdock, L. L., Higgins, T. J. V., and Chrispeels, M. J. (1994) Transgenic pea seeds expressing the □-amylase inhibitor of the common bean are resistant to bruchid beetles, Bio/Technology 12, 793-796.
    48. Morton, R. L., Schroeder, H. E., Bateman, K. S., Chrispeels, M. J., Armstrong, E., and Higgins, T. J. (2000) Bean □-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions, Proc Natl Acad Sci U S A 97, 3820-5.
    49. Da Silva, M. C., de Sa, M. F., Chrispeels, M. J., Togawa, R. C., and Neshich, G. (2000) Analysis of structural and physico-chemical parameters involved in the specificity of binding between □-amylases and their inhibitors, Protein Eng 13, 167-77.
    50. Da Silva, M. C., Mello, L. V., Coutinho, M. V., Rigden, D. J., Neshich, G., Chrispeels, M. J., and de Sa, M. F. (2004) Mutants of common bean □-amylase inhibitor-2 as an approach to investigate binding specificity to □-amylases, Pesquisa Agropecuaria Brasileira 39, 201-208.
    51. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res 22, 4673-80.
    52. Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures, J Mol Graph 14, 51-5, 29-32.
    53. DiscoveryStudio. (2002), Accelrys Inc, San Diego, CA.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE