簡易檢索 / 詳目顯示

研究生: 王俊捷
Chun-Chieh Wang
論文名稱: FPGA內部繞線延遲錯誤之內建自我測試
Built-In Self-Test of FPGA Interconnect Delay Faults
指導教授: 劉靖家
Jing-Jia Liou
吳誠文
Cheng-Wen Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 55
中文關鍵詞: 可程式化邏輯閘陣列延遲錯誤內建自我測試內部繞線
外文關鍵詞: FPGA, Delay Fault, BIST, Interconnect
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FPGA在IC設計的功能驗證及原型上(Prototyping)早已被廣泛地使用著。由於它具備可以重複規劃的特性(Configurability),使得它也被大量應用在網路、訊號處理等方面。今日伴隨著深次微米製程技術的進步,FPGA可以容納更大且更快的設計,但這也同時使得影響電路效能的延遲錯誤(Delay Fault)越加地明顯且嚴重。因而關於FPGA的延遲錯誤測試便顯得日益重要。此外由於FPGA內部超過80%的電晶體都屬於內部繞線(Interconnect),所以我們所提出來的方法將專注在FPGA內部繞線的延遲錯誤上。
    由於可重複規劃的特性,在FPGA上實現內建自我測試(BIST)的電路不僅不需要付出太多額外的代價,並且可以避免使用到過於昂貴的測試機台(ATE)。因而在這篇論文中我們針對FPGA內部繞線的延遲錯誤提出一個內建自我測試的方法。我們所提出來的BIST方法不僅可以作到即時測試(At-Speed Testing),還可以在不受時脈歪斜(Clock Skew)影響的情況下,測試完大部分的元件。此外由於我們選取最短的受測路徑(Path Under Test),因而對延遲錯誤將有很好的偵測能力(Detectability)。另外由於這個方法與使用者的電路無關,因而這個方法將可以應用在FPGA的製造測試上。
    在實驗的部分,我們使用Xilinx Spartan系列的FPGA架構來驗證我們的BIST方法,並且使用一個高效率的FPGA Fault Simulator來審視我們方法的良窳。在我們的實驗中,即便是在眾多的延遲缺陷(Delay Defect)的影響下,我們的錯誤涵蓋率(Fault Coverage)依然超過98%。所需的Test Configuration僅36個,而全部的測試時間將近6.46秒。


    As users implement more circuits operating at high speed in FPGA and more defects affect the delays with the advances of VLSI technology, FPGA delay-fault testing is becoming more important. The current delay-fault testing for FPGA is practiced by configuring the FPGA with different designs and running them at speed. It can't guarantee the performance of users' circuits since it is impossible to configure the FPGA with all possible designs.

    Given the low overheads of implementing FPGA BIST and high cost of at-speed ATE, BIST for delay faults in FPGA is the preferred platform. In this thesis, we proposed a new BIST-based approach for FPGA interconnect delay faults. It can operate at rated clock speed and test most components on interconnects without being affected by clock skew. Thus, it has high delay fault detectability to test the faulty interconnects. Besides, it can be applied to FPGA manufacturing test because it can be independent of the end application. We will use Xilinx Spartan series FPGA to demonstrate the BIST structure, and evaluate our method by an efficient FPGA fault simulator. In our experiment, the fault coverage can be more than 98\% even under influence of
    multiple delay defects. The total number of required test
    configurations is 36 and independent of array size. Additionally, the overall test time is approximately 6.46
    seconds.

    1 Introduction...........................................1 1.1 FPGA Category.......................................2 1.1.1 Island-Style and Hierarchy-Style FPGA............2 1.1.2 Cluster-Based and Non-Cluster-Based FPGA.........3 1.2 Island-Style FPGA Architecture......................4 1.3 FPGA Testing Classification.........................7 1.4 FPGA Delay-Fault Testing Issues.....................8 1.5 Organization........................................9 2 Previous Work.........................................10 2.1 FPGA BIST for Static Faults........................10 2.1.1 BIST of CLB.....................................10 2.1.2 BIST of Interconnect............................12 2.2 FPGA BIST for Delay Faults.........................13 2.3 A Universal Delay Testing Methodology for FPGA.....15 2.3.1 The Basic Concept...............................15 2.3.2 Single-Line-Segment Delay Fault Model...........17 2.3.3 Fault Detectability.............................17 2.3.4 Implementation Limitations......................19 3 The Proposed Method...................................21 3.1 The First BIST Circuit (BIST1).....................21 3.1.1 Operations of BIST1.............................23 3.1.2 Validation of BIST1.............................25 3.2 WE and ES Switch Testing Issues....................25 3.3 Clock Skew Validation for Testing PUTs Across CLBs.26 3.4 The Second BIST Circuit (BIST2)....................28 3.5 Test Configurations Reduction......................33 3.6 Test Flow..........................................34 4 Experimental Results..................................36 4.1 Routing Constraints and Test Configurations........36 4.2 Segment Coverage...................................38 4.3 Single-Line-Segment Delay Fault Coverage...........39 4.4 Statistical Delay Defect Coverage..................41 4.5 Test Time..........................................41 4.6 Comparison.........................................43 5 Conclusions and Future Work...........................44 A Test Configurations...................................45

    [1] C.-F.Wu and C.-W.Wu, “Testing function units of dynamic reconfigurable FPGAs,” in Proc.
    9th VLSI Design/CAD Symp., (Nantou), pp. 189–192, Aug. 1998.
    [2] W.-K. Huang and F. Lombardi, “An approach for testing programmable/configurable field
    programmable gate arrays,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 450–455, 1996.
    [3] C. Stroud, S. Konala, P. Chen, andM. Abramovici, “Built-in self-test for programmable logic
    blocks in FPGAs (Finally, a free lunch: BIST without overhead!),” in Proc. IEEE VLSI Test
    Symp. (VTS), pp. 387–392, 1996.
    [4] M. Renovell and Y. Zorian, “Different experiments in test generation for XILINX FPGAs,”
    in Proc. Int. Test Conf. (ITC), pp. 854–862, 2000.
    [5] C.-F. Wu and C.-W. Wu, “Testing interconnects of dynamic reconfigurable FPGAs,” in Proc.
    Asia and South Pacific Design Automation Conf. (ASP-DAC), (Hong Kong), pp. 279–282,
    Jan. 1999.
    [6] H. Michinishi, T. Yokohira, T. Okamoto, T. Inoue, and H. Fujiwara, “A test methodology for
    interconnect structures of LUT-based FPGAs,” in Proc. Fifth IEEE Asian Test Symp. (ATS),
    (Hsinchu), pp. 68–74, Nov. 1996.
    [7] M. Renovell, J. Figueras, and Y. Zorian, “Test of RAM-based FPGA: Methodology and application
    to the interconnect,” in Proc. IEEE VLSI Test Symp. (VTS), (Monterey), pp. 230–237,
    Apr. 1997.
    [8] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in self-test of FPGA interconnect,”
    in Proc. Int. Test Conf. (ITC), pp. 404–411, 1998.
    [9] X. Sun, J. Xu, and B. Chan, “Novel technique for built-in self-test of FPGA interconnects,”
    in Proc. Int. Test Conf. (ITC), pp. 795–803, 2000.
    [10] C. Stroud, J. Nall, M. Lashinsky, and M. Abramovici, “BIST-based diagnosis of FPGA interconnect,”
    in Proc. Int. Test Conf. (ITC), pp. 618–627, 2002.
    [11] A. Krasniewski, “Application-dependent testing of FPGA delay faults,” in Proc. EUROMICRO
    Conf., pp. 260–267, 1999.
    [12] I. G. Harris, P. R. Menon, and R. Tessier, “BIST-based delay path testing in FPGA architectures,”
    in Proc. Int. Test Conf. (ITC), pp. 932–938, 2001.
    [13] M. Tahoori, “Improving detectability of resistive open defects in FPGA,” in MAPLD Int.
    Conf., 2002.
    [14] M. Abramovici and C. Stroud, “BIST-based delay-fault testing in FPGAs,” in Proc. Eighth
    IEEE Int’l On-Line Testing Workshop, pp. 131–134, 2002.
    [15] E. Chmelar, “FPGA interconnect delay fault testing,” in Proc. Int. Test Conf. (ITC), pp. 1239–
    1247, 2003.
    [16] Y.-L. Peng, “A universal delay testing methodology for FPGA,” Master’s thesis, National
    Tsing Hua University, Dept. Electrical Engineering, July 2003.
    [17] Xilinx, The Programmable Gate Array Data Book. San Jose, California: Xilinx, Inc., 1996.
    [18] X. Inc., “Virtex-II complete data sheet.” http://www.xilinx.com/, 2003.
    [19] Altera, FLEX 8000 Programmable Logic Device Family Data Sheet, Ver. 10.01. Altera, Co.,
    June 1999.
    [20] Xilinx, XC6200 Field Programmable Gate Arrays. San Jose, California: Xilinx, Inc., Apr.
    1997.
    [21] I. G. Harris and R. Tessier, “Interconnect testing in cluster-based FPGA architectures,” in
    Proc. IEEE/ACM Design Automation Conf. (DAC), pp. 49–54, 2000.
    [22] X. Inc., “Spartan complete data sheet.” http://www.xilinx.com/, 2002.
    54
    [23] C. Stroud, A Designer’s Guide to Built-In Self-Test. Boston: Kluwer Academic Publishers,
    2002.
    [24] H.-C. Liao, R.-F. Huang, J.-J. Liou, and C.-W. Wu, “An FPGA fault simulator for stuck-at
    and segment delay faults,” in Proc. The 14th VLSI/Design CAD Symp, pp. 461–464, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE