簡易檢索 / 詳目顯示

研究生: 楊智超
Chih-Chao Yang
論文名稱: 折射式微透鏡應用於微光電整合系統
Application of Refractive Microlenses in Integrated Optical/Optoelectronic Systems
指導教授: 吳孟奇
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 118
中文關鍵詞: 微透鏡微光學光學平台
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著資訊的發展及影像處理的的需求,微小化、高密度積體化已經成為現行光電系統發展的主流,其中,被視為最可行的技術是整合式的微光電系統,此技術將光發射、光傳輸或光接收元件整合於微小的系統裡,除可降低成本外,亦可有效提高效能。
    本論文提出兩種新型且易於整合之折射式直立微透鏡製程,其主要原理是利用高分子在高溫時內聚的物理現象製作,利用這兩種製程可製造出表面相當平滑之球面微透鏡,並且這些製造出的微透鏡皆有相當高的數值孔徑值(NA),可有效聚焦高度發散之光束。經由研究證實,發散角相當大的邊射型雷射(edge-emitting laser diode),其發散角由原來大於四十度經過微透鏡後角度收歛變為低於五度,這將有效增加雷射光耦合至單膜光纖耦合率(coupling efficiency),我們相信,這兩種折射式直立微透鏡除了可用於光通訊系統外,亦有利於其他微光電平台(optical bench)之建構。
    除此之外,鑒於現行封裝技術光纖光源耦合至高速檢光器(Photodiode)表面之嚮應區(active region)效率低,而且需要昂貴、高精準度之對準設備,我們在本論文中亦提出ㄧ種整合微球透鏡(micro-ball-lens)之高速檢光器,藉由聚焦光源至嚮應區而提高耦合率及光纖對準的容許範圍。研究證實,在整合250微米(□m)的紅寶石(ruby)微球透鏡後,相較於單一高速檢光器,光纖對準的容許範圍提高了7.1×10倍,對於現有封裝技術而言,這將是一大利多。
    附帶一提的是,上述微光電系統的建置及優化,是由我們所撰寫的蒙地卡羅光追跡法(Monte-Carlo ray trace)完成,這也是本論文研究重點之ㄧ。


    Integrated micro-optical/optoelectronic system provides a promising approach that multiple and functional optical elements can be integrated on a single chip. As compared to the conventional optical/optoelectronic systems, the size, weight, assembly, adjusting time, and cost of the integrated systems are greatly reduced.
    In this dissertation, two novel and simple fabrications of refractive vertical microlenses were demonstrated. The microlenses are spherical-shaped and have very high NA value after the reflow processes. As proven, the beam emitted from an edge-emitting laser diode with high divergence angle (θ = 40□) was successfully converged to less than 5□. These vertical microlenses will find their potential in the micro-optical/optoelectronic systems. Another micro-ball-lens integrated InGaAs p-i-n high speed photodiode is also proposed to enlarge the alignment tolerance. According to the results, as we integrate a d = 250-um ruby micro-ball-lens on the photodiode, the alignment tolerance will be 7.1-fold * 10-fold to the bare chip without microlens. Such wild alignment tolerance would be a great improvement for the package technique nowadays.
    In addition, with the Monte-Carlo ray trace simulation, we can predict and optimize the performances of these refractive microlens integrated optical systems.

    Contents Chinese Abstract………………………………………….……… I English Abstract……………………………………….…………. II Acknowledgement……………………………………………....... III Contents…………………………………………………………... IV Table Captions……………………………………………………. VII Figure Captions…………………………………………………... VIII Chapter 1 Introduction………………………………………….. 1 Chapter 2 Theory of Monte-Carlo Ray Trace Simulation…….. 7 2.1 Light Source……………………………………………… 8 2.2 Light Propagation………………………………………… 9 a. reflection and refraction at an interface………………. 9 b. incidence at anti-reflection (AR) coating layer………. 12 2.3 Detection…………………………………………………. 13 a. small aperture photodiode……………………………. 13 b. a step-index single mode fiber……………………….. 14 c. far-field image………………………………………... 16 Chapter 3 Vertical Microlens —Type I: Polymeric Vertical Microlens…………………………………………...… 23 3.1 Introduction……………………………………...………. 23 3.2 Fabrication of the Polymeric Vertical Microlens………… 24 3.3 Results and Discussion…………………………………… 25 3.4 Summary…………………………………………………. 33 Chapter 4 Vertical Microlens — Type II: Vertical Reflow Microlens……………………………………………… 50 4.1 Introduction………………………………………………. 50 4.2 Fabrication of the Vertical Reflow microlens……………. 51 4.3 Results and Discussion…………………………………… 53 a. effect of mask width (WB)……………………………. 53 b. effect of spin-coating speed…………………………... 54 4.4 Summery………………………………………………….. 58 Chapter 5 Micro-Ball-Lens Integrated High-Speed InGaAs p-i-n Photodiodes…………………………………….……… 72 5.1 Introduction……………………………………….………. 72 5.2 Fabrication of the MBL Integrated Photodiode………..….. 73 5.3 Model Settings for the MBL Integrated Photodiode……… 75 5.4 Results and Discussion……………………………………. 76 a. Z-axial response uniformity………………….……….. 76 b. X(Y)-axis response uniformity…………..…………… 78 5.5 Summary………………………………………………..… 83 Chapter 6 Conclusion and Future Works……………….……… 100 6.1 Future Works of Polymeric Vertical Microlens………….. 100 6.2 Future Works of Vertical Reflow Microlens……………… 101 6.3 Future Works of Micro-Ball-Lens Integrated High-Speed InGaAs p-i-n Photodiodes………………………......……. 102 References…………………………………………………….. 104 Publication List…………………………………………….……… 116

    [1] Bach and N. Neuroth, “The properties of optical glass”, Springer Verlag. Berlin., 1995.
    [2] S. E. Miller, “Integrated optics: an introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059–2068, 1969.
    [3] S.-K. Lee, K.-C. Lee, S.S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng., vol. 12, 334–340, 2002.
    [4] J. A. Cox, D. C. Dobson, T. Ohnstein, and J. D. Zook, “Optical performance of high-aspect LIGA grating II,” Opt. Eng., vol. 37, 2878–2884, 1998.
    [5] J. Hossfeld, T. Paatzsch, J. Schultze, M. Neumeier, L. Weber, H. D. Bauer, and W. Ehrfeld, “Polymetric optical MEMS, in: Proceedings of the Symposium on Design, Test, and Microfabrication of MEMS and MEOMS,” Paris, France, March–April, 1999.
    [6] L. Y. Lin, ”Free space micromachined optical switches for optical networking,” IEEE J. of Selected Topics in Quantum Electronics, vol. 5, 4–9, 1999.
    [7] L. Y. Lin, E. L Goldstein, and R. W. Tkach, ” On the expandability of free-space micromachined optical cross connects,” J. Lightwave Technol., vol. 18, 482–489, 2000.
    [8] L. Y. Lin, E. L Goldstein, and R. W. Tkach, ”Augular-precision enhancement in free space micromachined optical switches,” IEEE Photon. Technol. Lett., vol. 11, 1253–1255, 2002.
    [9] G. D. J. Su, H. Toshiyoshi, and M. C. Wu, “Surface micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors,” IEEE Photon. Technol. Lett., vol. 13, 606–608, 2001.
    [10] J. T. Butler, V. M. Bright, and J. R. Reid, “Scanning and rotating icromirrors using thermal actuators,” Proc. SPIE, vol. 3131, pp. 134–144, 1997.
    [11] D. W. Craig and J. Staromlynska, “Comparison of variable birefringence devices and Fabry-Perot etalons for use as tunable filters,” IEEE J. Quantum Electron., vol. 26, 1440–1446, 1990.
    [12] D. L. MacFarlane and E. M. Dowling, “Three-mirror etalons as bandpass filters for modulated optical signals,” IEEE Photonics Technol. Lett., vol. 5, 1089–1092, 1993.
    [13] L. Y. Lin, J. L. Shen, M. C. Wu, and A. M. Sergent, “Tunable three dimensional solid Fabry-Perot etalons fabricated by surface micromachining,” IEEE Photon. Technol. Lett., vol. 8, pp. 101–103, 1996.
    [14] S. S. Lee, L. Y. Lin, and M. C. Wu, “Surface-micromachined free-space micro-optical systems containing three-dimensional micro-gratings,” Appl. Phys. Lett., vol. 67, pp. 2135–2137, 1995.
    [15] C. Gimkiewicz, D. Hagedorn, J. Jahns, E. B. Kley, and F. Thoma, “Fabrication of microprisms for planar-optical interconnections using analog gray-scale lithography with high energy beam sensitive glass,” Appl. Opt., vol. 38, pp. 2986–2990, 1999.
    [16] S. I. Chang and J. B. Yoon, “A 3-D planar microlens for an effective monolithic optical interconnection System,” IEEE Photon. Technol. Lett., vol. 18, pp. 814–816, 2006.
    [17] M.-H. Kiang, O. Solgaard, R. S. Muller, and K. Y. Lau, “Micromachined polysilicon microscanners for barcode readers,” IEEE Photon. Technol. Lett., vol. 8, pp. 95–97, 1996.
    [18] V. A. Aksyuk, F. Pardo, C. A. Bolle, S. C. Arney, C. R. Giles, and D. J. Bishop, “Lucent Microstar micromirror array technology for large optical crossconnects,” Proc. SPIE, vol. 4178, pp. 320–324, 2000.
    [19] T. Yamamoto, J. Yamaguchi, N. Takeuchi, A. Shimizu, E. Higurashi, R. Sawada, and Y. Uenishi, “A three-dimensional MEMS optical switching module having 100 input and 100 output ports,” IEEE Photon. Technol. Lett., vol. 15, 1360–1362, 2003.
    [20] S. S. Lee, L.-S. Huang, C.-J. Kim, and M. C. Wu, “Free-space fiberoptic switches based on MEMS vertical torsion mirrors,” J. Lightwave Technol., vol. 17, pp. 7–13, 1999.
    [21] Marxer C, Thio C, Gretillat M A and Rooij N F 1997 “Vertical mirror fabricated by deep reactive ion etching for fiber-optical switching applications,” IEEE J. Microelectromech. Syst., Vol. 6, pp. 277–85, 1997.
    [22] J.-B. Yoon, B.-I. Kim, Y.-S. Choi, and E. Yoon, “3-D Construction of Monolithic Passive Components for RF and Microwave ICs Using Thick-Metal Surface Micromachining Technology,” IEEE T. Microw. Theory, vol. 51, 279–288, 2003.
    [23] K. Shiraishi, “A fiber with a long working distance for integrated coupling between laser diodes and single-mode fibers,” IEEE J. Lightwave Technol., vol. 13, pp. 1736–1744, 1995.
    [24] J. Shimada, O. Ohguchi, and R. Sawada, “Focusing characteristics of a wide-striped laser diode integrated with a microlens,” J. Lightwave Technol., vol. 12, pp. 936–942, 1994.
    [25] Z. L. Liau, D. Z. Tsang, and J. N. Walpole, “Simple compact diode-laser/microlens packaging,” IEEE J. Quantum Electron., vol. 33, pp. 457–461, 1997.
    [26] M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett., vol. 15, 945–947, 2003.
    [27] H. Peng, Y. L. Ho, X. J. Yu, M. Wong, and H. S. Kwok, “Coupling efficiency enhancement in organic light-emitting devices Using microlens array—theory and experiment” J. Disp. Technol., vol. 1, pp. 278–282, 2005.
    [28] Y. Oikawa, H. Kuwatsuka, T. Yamamoto, T. Ihara, H. Hamano, and T. Minami,“Packaging techno1ogy for a 10-Gb/s photoreceiver module,” IEEE J. Lightwave Technol., vol. 12, pp. 343–352, 1994.
    [29] M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in Poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem., vol. 73, pp. 4491–4498, 2001.
    [30] S.-K. Hsiung, C.-H. Lin, and G.-B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection,” Electrophoresis, vol. 5, pp. 1122–1129, 2005.
    [31] S. Camou, H. Fujita, and T. Fujii, “PDMS 2-D optical lens integrated with microfluidic channels: Principle and characterization,” Lab Chip, vol. 3, pp. 40–45, 2003.
    [32] D. Abookasis and J. Rosen, “Microlens array help imaging hidden objects for medical applications”, Proceedings of the 2004 IEEE 11th International Conference on Electronics, Circuits and Systems. P431–434. Dec. 13–15.
    [33] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E, vol. I, pp. 759–766, 1990.
    [34] M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Optics., vol. 37, pp. 253-265, 1990.
    [35] Z. D. Popovic, R. A. Sprague, and GAN Connell,” Technique for the monolithic fabrication of microlens array,” Appl. Opt., vol. 27, pp. 1281–1284, 1988.
    [36] J. S. Leggatt and M. C. Hutley, “Microlens arrays for interconnection of single-mode fiber arrays,” Electron. Lett., vol. 27, pp. 238–241, 1991.
    [37] G. Artzner, “Microlens arrays for Schack-Hartmann wavefront sensor,” Opt. Eng., vol. 31, pp. 1311, 1992.
    [38] D. Daly, R. A. Sprague, and G. A. Neville Connell, “Manufacture of microlenses by melting photoresist,” IOP short meeting series 30, Institute of Physics, May 1, Teddington, UK, 1991.
    [39] S. Mihailov and S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt., vol. 32, pp. 6211–6218, 1993.
    [40] 0. Wada, “Ion-beam etching of InP and its application to the fabrication of high radiance InGaAsP/InP light emitting diodes,” J. Electrochem. Soc., vol. 131, pp. 2373–2376, 1984.
    [41] S. R. Cho, J. Kim, K. S. Oh, S. K. Yang, J. M. Baek, D. H. Jang, T. I. Kim, and H. Jeon, “Enhanced optical coupling performance in an InGaAs photodiode integrated with wet-etched microlens,” IEEE Photon. Technol. Lett., vol. 14, pp. 378-380, 2002.
    [42] Y. S. Kim, J. Kim, J. S. Choe, Y. G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett., vol. 12, pp. 507-509, 2000.
    [43] M. Hayashi, I. Watanabe, T. Nakata, M. Tsuji, K. Makita, S. Yamakata, and K. Taguchi, “Microlens-integrated large-area InAlGaAs–InAlAs superlattice APD’s for eye-safety 1.5-□m wavelength optical measurement use,” IEEE Photon. Technol. Lett., vol. 10, pp. 576-578, 1998.
    [44] D. L MacFarlane, V. Narayan, W. R. Cox, T. Chen, and D. J. Hayes,“Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett., vol. 6, pp. 1112–1114, 1994.
    [45] E. H. Park, M. J. King, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett., vol. 11, pp. 439-441, 1999.
    [46] K. Iga and S. Misawa, “Distributed-index planar microlens and stacked planar optics: a review of progress,” Appl. Opt., vol. 25, pp. 3388–3396, 1986.
    [47] J. Sochacki, “Accurate reconstruction of the refractive-index profile of fibers and preform rods from transverse interferometric data,” Appl. Opt., vol. 25, pp. 3473–3482, 1986.
    [48] M. Jarczynski, T. Seiler, and J. Jahns, “Integrated three- dimensional optical multilayer using free-space optics,” Appl. Opt., vol. 45, pp. 6335–6341, 2006.
    [49] J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked Si-based phase elements,” IEEE Photon. Technol. Lett., vol. 17, pp. 214–216, 2005.
    [50] J. C. Roulet, R. V□lkel, H. P. Herzig, E. Verpoorte, N. F. D. Rooij, and R. D□ndliker, “Microlens systems for fluorescence detection in chemical microsystems,” Opt. Eng., vol. 40, pp. 814–821, 2001.
    [51] K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman, and T. W. Hargett, “Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 943–947, 2002.
    [52] T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, and J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface-emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt., vol., vol. 39, pp. 683–689, 2000.
    [53] F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Select. Topics Quantum Electron., vol. 2, pp. 3–13, 1996.
    [54] D. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: Challenges and solutions,” Proc. IEEE, vol. 88, pp. 806–817, 2000.
    [55] H. Thienpont, C. Debaes, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, and M. Hanney, “Plastic microoptical interconnection modules for parallel free-space inter-and intra-MCM data communication,” Proc. IEEE, vol. 88, pp. 769–779, 2000.
    [56] J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron., vol. 27, pp. 1333–1338, 1991.
    [57] K. L. Lear. K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, “Selectively oxidized vertical cavity surface emitting lasers with 5010 power conversion efficiency,” Electron. Lett., vol. 31, pp. 208–209, 1995.
    [58] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, “An optically pumped GaN-AlGaN vertical cavity surface emitting laser,” Appl. Phys. Lett., vol. 69, pp. 1–3, 1996.
    [59] Y. D. Huk, J. H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diode,” J. Electrochem. Soc., vol. 150, no. 2, pp. 57–60, 2003.
    [60] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, and M. G. Craford, “High performance AlGaInP visible light-emitting diodes,” Appl. Phy. Lett., vol. 57, 1990.
    [61] K. S. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Micro- fabricated hinges,” Sens. Actuators A, vol. 33, pp. 249–256, 1992.
    [62] M. C. Wu, L. Y. Lin, S.-S. Lee, and K. S. J. Pister, “Micro- machined free-space integrated micro-optics,” Sens. Actuators A, vol. 50, pp. 127–134, 1995.
    [63] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Self-aligned hybrid integration of semiconductor lasers with micromachined micro-optics for optoelectronic packaging,” Appl. Phys. Lett., vol. 66, pp. 2946–2948, 1995.
    [64] R. Yeh, E. J. J. Kriglick, and K. S. J. Pister, “Surface micro- machined components for articulated microrobots,” J. Micro- electromech. Syst., vol. 5, pp. 10–17, 1996.
    [65] M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proc. IEEE vol. 85, 1833–1856, 1997.
    [66] A. Friedberger and R. S. M□ller, “Improved surface micro- machined hinges for fold-out structures,” J. Microelectromech. Syst., vol. 7, pp.315–319, 1998.
    [67] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Three- dimensional micro-Fresnel optical elements fabricated by micromachining techniques,” Electron. Lett., vol. 30, pp. 448–449, 1994.
    [68] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photon. Technol. Lett., vol. 6, pp. 1445–1447, 1994.
    [69] C. R. King, L. Y. Lin, and M. C.Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photon. Technol. Lett., vol. 8, pp. 1349–1351, 1996.
    [70] R. R. A. Syms, “Refractive collimating microlens arrays by surface tension self-assembly,” IEEE Photon. Technol. Lett., vol. 12, pp. 1507–1509, 2000.
    [71] K. Ikuta, S. Maruo, S. Kojima, New micro stereo lithography for freely movable 3D micro structure, in: Proceedings of the MEMS 98, at Heidelberg, Germany, 1998.
    [72] A. Bertsch, H. Horenz, P. Renaud, Combining micro- stereolithography and thick resist UV lithography for 3D micro- fabrication, Proceedings of the 1998 IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems, P18–23 Jan 25–29, at Heidelberg, German, 1998,
    [73] R. Yang and W. Wang, “Out-of-plane polymer refractive microlens fabricated based on direct lithography of SU-8,” Sensor. Actuat. A, vol. 113, pp. 71–77, 2004.
    [74] R. Yang, W. Wang, and S. A. Soper, “Out-of-plane microlens array fabricated using ultraviolet lithography,” Appl. Phys. Lett., vol. 86, 161110, 2003.
    [75] S. I. Chang and J. B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricate by a 3D diffuser lithography and plastic replication method,” Opt. Express, vol. 12, pp. 6366–6371, 2004.
    [76] M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rodgers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett., vol. 82, 1152–1154 (2003).
    [77] H. Yang, C. K. Chao, C. P. Lin, and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng., vol. 14, pp. 277–282, 2004.
    [78] C. T. Pan, “Silicon-based coupling platform for optical fiber switching in free space,” J. Micromech. Microeng., vol. 14, pp. 129–137, 2004.
    [79] Y. M. Govaerts and M. M. Verstraete “Raytran: A Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media,” IEEE Trans. Geosci. Remote Sensing, vol. 36, pp. 493–505, 1998.
    [80] J. K. Ross and A. L. Marshak, “Calculation of canopy bidirectional reflectance using the Monte Carlo method,” Remote Sens. Environ., vol. 24, pp. 213–225, 1988.
    [81] N. S. Goel, I. Rozehnal, and R. L. Thompson, “A computer graphics based model for scattering from objects of arbitrary shapes in the optical region,” Remote Sens. Environ., vol. 36, pp. 73–104, 1991.
    [82] C. C. Borel, S. A. W. Gerstl, and B. J. Powers, “The radiosity method in optical remote sensing of structured 3-D surfaces,” Remote Sens. Environ., vol. 36, pp. 13–44, 1991.
    [83] N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt., vol. 4, pp. 1–9, 2002.
    [84] K. D. Moller, in Optics, Mill Valley, CA: University Science Books, 1988, chaps. 4–5.
    [85] K. J. Gasvik, in Optical Metrology, 3rd ed.: John Wiley & Sons LTD, 2002, chaps. 4–5.
    [86] T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Proton beam writing of low-loss polymer optical waveguides,” IEEE Photon. Technol. Lett., vol. 83, pp. 1707–1709, 2003.
    [87] F A. Borreman, S. Musa, A. Kok, M. Diemeer and A. Driessen, “Fabrication of polymeric multimode waveguides and devices in SU-8 photoresist using selective polymerization”, Proceedings Symposium IEEE/LEOS Benelux Chapter, Amsterdam, pp. 83–86, 2002.
    [88] C. Collins, R. Miles, et al, “A new micro-machined Millimeter-Wave and Terahertz snap-together rectangular waveguide technology”, IEEE Microwave and Guided Wave Letters, Vol. 9, pp. 63–65, 1999.
    [89] R. R. A. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures—the state-of-the-art,” J. Microelectromech. Syst. 12, pp. 387–417, 2003.
    [90] http://www.microchem.com/
    [91] M. C. Hutley,”Optical techniques for the generation of microlens arrays,” J. Mod. Opt., vol. 37, pp. 253–265, 1990.
    [92] S. V. Postnikov, M. H. Somervell, C. L. Henderson, and S. Katz, “Top surface imaging lithography processes for I-line resists using liquid-phase silylation,” in: Proc. 23rd International Conference on Microelectronics, vol. 2, pp. 12–15, 2002.
    [93] C. Smita, R. A. C. M. M. van Swaaij, E. A. G. Hamers, and M. C. M. van de Sanden, “The role of the silyl radical in plasma deposition of microcrystalline silicon” J. Appl. Phys., vol. 84, pp. 2426–2428, 1998.
    [94] M. B. Stern, S. C. Palmateer, M. W. Horn, M. Rothschild, B. E. Maxwell, and J. E. Curtin, “Profile control in dry development of high-aspect-ratio resist structures” J. Vac. Sci. Technol. B, vol. 13, pp. 3017–3021, 1995.
    [95] Y. M. Zhang, V. Borzenets, N. Dubash, T. Reynolds, Y. G. Wey, and J. Bowers, “Cryogenic performance of a high-speed GaInAs/InP p-i-n photodiode” J. Lightwave Technol., vol. 12, pp. 529–533, 1997.
    [96] J. A. Lock and E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A, vol. 8, pp. 1541–1552, 1991.
    [97] C. Saloma and M. O. Cambaliza, “Single-gaussian-beam interaction with a dielectric microsphere: radiation forces, multiple internal reflections, and caustic structures,” Appl. Opt., vol. 34, pp. 3522–3528, 1995.
    [98] R. Gussgard, T. Lindmo, and I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B, vol. 9, pp. 1922–1930, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE