研究生: |
葉桓溥 |
---|---|
論文名稱: |
開發玫瑰紅裝載之複合高分子材料作為光激發藥物控制釋放之奈米平台 Development of rose bengal-loaded multipolymeric nanoplateform as photo-responsive drug carrier for cancer therapy |
指導教授: | 黃郁棻 |
口試委員: |
陳仁焜
張建文 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 玫瑰紅 、四氧化三鐵 、光動力治療 、藥物控制釋放 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
玫瑰紅(Rose Bengal)具有優良的光敏化效率,能產生大量的單態氧,於光動力治療領域深具應用潛力。過去研究可透過直接修飾如醋酸化、或藉由奈米載體攜帶,協助藥物抵達並累積於腫瘤微環境,並提升其穿越細胞膜之能力,達到有效傳遞藥物之目的。本研究主要利用甲殼素(chitosan)、聚乙烯醇(Polyvinyl alcohol)、混合短鏈聚乙烯亞胺(Polyethylenimine),以油水乳化法將疏水性氧化鐵奈米粒子包覆於奈米團簇中,作為光動力藥物載體。此複合體除具有良好的水溶分散性,聚乙烯亞胺之陽離子聚電解質特性,亦可藉由靜電吸引力,減少負電性玫瑰紅分子於中性環境下之滲漏問題;一旦施予光照,玫瑰紅的光敏化作用會產生大量活性氧分子,進而氧化聚乙烯亞胺之三級胺集團,造成奈米團簇之表面電位下降,使玫瑰紅分子從載體中釋放,達到光動力控制藥物釋放之目的。磁性鐵奈米粒子能在本體系中進一步扮演磁共振造影對比劑的顯影功能,以及提供磁力導引靶向式藥物傳遞,利用磁性導引以及光動力誘導藥物釋放可以達到高準確性的藥物傳遞及癌症治療。
綜合上述,本研究提出簡單而快速的合成方法,不須額外的化學性修飾以及共聚合高分子的製程,利用單純的高分子及藥物摻雜,並以靜電作用力以及親疏水作用力進行合成,完成一對氧化壓力敏感之新穎複合高分子材料,利用聚乙烯亞胺之陽離子特性,在光敏化反應中的可調控性,可控制負電性藥物或核糖核酸的吸附與釋放,開發出有別於傳統光動力治療,一智慧型之癌症治療奈米平台。
Rose bengal (RB) which exhibits high singlet oxygen (1O2) yield is a clinical promising photosensitizer in anticancer therapy. Several RB hydrophobic derivatives (e.g., acetate) have been developed to facilitate intracellular accumulation. Nanoparticles also serve as effective carriers to deliver these compounds to the tumor microenvironment, or to cross biological barriers such as cell membranes. In this study, RB molecules were encapsulated in a mixture of chitosan, polyvinyl alcohol and branched polyethylenimine (bPEI) with hydrophobic iron oxide nanoparticles through an oil-in-water emulsion method. The as-prepared multipolymeric magnetic nanoclusters displayed high water dispersibility and the cationic groups of bPEI were effective for RB loading through electrostatic interaction. In addition, triggered release of the loaded drugs also occurred simultaneously during the photodynamic reaction. The improvement of photodynamic-stimulated triggered release holds great promise in precise control of drug delivery.
1. Love, J.C., et al., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170.
2. Daniel, M.-C. and D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 2003. 104(1): p. 293-346.
3. Sapsford, K.E., et al., Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013. 113(3): p. 1904-2074.
4. Eustis, S. and M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006. 35(3): p. 209-217.
5. de Lima, R., A.B. Seabra, and N. Durán, Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology, 2012. 32(11): p. 867-879.
6. Nozik, A.J., et al., Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chemical Reviews, 2010. 110(11): p. 6873-6890.
7. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021.
8. Laurent, S., et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 2008. 108(6): p. 2064-2110.
9. Mahmoudi, M., et al., Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 2011. 63(1–2): p. 24-46.
10. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005. 5(3).
11. Koo, O.M., I. Rubinstein, and H. Onyuksel, Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(3): p. 193-212.
12. Shi, J., et al., Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters, 2010. 10(9): p. 3223-3230.
13. Cuenca, A.G., et al., Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 2006. 107(3): p. 459-466.
14. Vemuri, S. and C.T. Rhodes, Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharmaceutica Acta Helvetiae, 1995. 70(2): p. 95-111.
15. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 2012. 64, Supplement(0): p. 206-212.
16. Kango, S., et al., Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 2013. 38(8): p. 1232-1261.
17. Kataoka, K., A. Harada, and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 2001. 47(1): p. 113-131.
18. Müller, R.H., K. Mäder, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 50(1): p. 161-177.
19. Couvreur, P., Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews, 2013. 65(1): p. 21-23.
20. Ensign, L.M., R. Cone, and J. Hanes, Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews, 2012. 64(6): p. 557-570.
21. Reddy, L.H., et al., Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 2012. 112(11): p. 5818-5878.
22. Yoo, D., et al., Theranostic Magnetic Nanoparticles. Accounts of Chemical Research, 2011. 44(10): p. 863-874.
23. Nicolas, J., Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013. 12(11): p. 991-1003.
24. Fleige, E., M.A. Quadir, and R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Advanced Drug Delivery Reviews, 2012. 64(9): p. 866-884.
25. Gao, W., J.M. Chan, and O.C. Farokhzad, pH-Responsive Nanoparticles for Drug Delivery. Molecular Pharmaceutics, 2010. 7(6): p. 1913-1920.
26. Dai, J., et al., pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. International Journal of Pharmaceutics, 2004. 280(1–2): p. 229-240.
27. Du, J.-Z., et al., A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery. Angewandte Chemie International Edition, 2010. 49(21): p. 3621-3626.
28. Duncan, R., Development of HPMA copolymer–anticancer conjugates: Clinical experience and lessons learnt. Advanced Drug Delivery Reviews, 2009. 61(13): p. 1131-1148.
29. Kang, H., et al., Near-Infrared Light-Responsive Core–Shell Nanogels for Targeted Drug Delivery. ACS Nano, 2011. 5(6): p. 5094-5099.
30. Cabane, E., et al., Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter, 2011. 7(19): p. 9167-9176.
31. Matsumoto, S., et al., Environment-Responsive Block Copolymer Micelles with a Disulfide Cross-Linked Core for Enhanced siRNA Delivery. Biomacromolecules, 2008. 10(1): p. 119-127.
32. Herlambang, S., et al., Disulfide crosslinked polyion complex micelles encapsulating dendrimer phthalocyanine directed to improved efficiency of photodynamic therapy. Journal of Controlled Release, 2011. 155(3): p. 449-457.
33. Lee, S.H., et al., Current Progress in Reactive Oxygen Species (ROS)-Responsive Materials for Biomedical Applications. Advanced Healthcare Materials, 2013. 2(6): p. 908-915.
34. Vo, C.D., G. Kilcher, and N. Tirelli, Polymers and Sulfur: what are Organic Polysulfides Good For? Preparative Strategies and Biological Applications. Macromolecular Rapid Communications, 2009. 30(4-5): p. 299-315.
35. Napoli, A., et al., Oxidation-responsive polymeric vesicles. Nat Mater, 2004. 3(3): p. 183-189.
36. Velluto, D., D. Demurtas, and J.A. Hubbell, PEG-b-PPS Diblock Copolymer Aggregates for Hydrophobic Drug Solubilization and Release: Cyclosporin A as an Example. Molecular Pharmaceutics, 2008. 5(4): p. 632-642.
37. Gupta, M.K., et al., Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 2012. 162(3): p. 591-598.
38. Garrison, W.M., Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chemical Reviews, 1987. 87(2): p. 381-398.
39. Yu, S.S., et al., Physiologically Relevant Oxidative Degradation of Oligo(proline) Cross-Linked Polymeric Scaffolds. Biomacromolecules, 2011. 12(12): p. 4357-4366.
40. Wilson, D.S., et al., Orally delivered thioketal nanoparticles loaded with TNF-a siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater, 2010. 9(11): p. 923-928.
41. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 2013. 63(1): p. 11-30.
42. Schulze, A. and A.L. Harris, How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012. 491(7424): p. 364-373.
43. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nat Nano, 2007. 2(12): p. 751-760.
44. Miller, A.B., et al., Reporting results of cancer treatment. Cancer, 1981. 47(1): p. 207-214.
45. Dougan, M. and G. Dranoff, Immunotherapy of Cancer, in Innate Immune Regulation and Cancer Immunotherapy, R. Wang, Editor. 2012, Springer New York. p. 391-414.
46. Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 2012. 12(4): p. 252-264.
47. Noordijk, E.M., et al., Radiotherapy as an alternative to surgery in elderly patients with resectable lung cancer. Radiotherapy and Oncology, 1988. 13(2): p. 83-89.
48. Norén, G., et al., Gamma Knife Surgery in Acoustic Tumours, in Advances in Stereotactic and Functional Neurosurgery 10, B. Meyerson, et al., Editors. 1993, Springer Vienna. p. 104-107.
49. Wu, A., et al., Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. International Journal of Radiation Oncology*Biology*Physics, 1990. 18(4): p. 941-949.
50. Dolmans, D.E.J.G.J., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-387.
51. Castano, A.P., P. Mroz, and M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer, 2006. 6(7): p. 535-545.
52. Bonnett, R., Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 1995. 24(1): p. 19-33.
53. Dougherty, T.J., et al., Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl Cancer Inst., 1975. 55: p. 115-121.
54. Kelly, J.F., M.E. Snell, and M.C. Berenbaum, Photodynamic destruction of human bladder carcinoma. Br. J. Cancer 1975. 31: p. 237-244.
55. Dougherty, T.J., et al., Photoradiation Therapy for the Treatment of Malignant Tumors. Cancer Research, 1978. 38(8): p. 2628-2635.
56. McCaughan, J.S.J., et al., Palliation of esophageal malignancy with
photoradiation therapy. Cancer, 1984. 54: p. 2905-2910.
57. Hayata, Y., et al., Photodynamic therapy with hematoporphyrin derivative in cancer of the upper gastrointestinal tract. Semin. Surg. Oncol., 1985. 1: p. 1-11.
58. Hayata, Y., et al., Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 1982. 81: p. 269-277.
59. Lim, C.-K., et al., Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Letters, 2013. 334(2): p. 176-187.
60. Chatterjee, D.K., L.S. Fong, and Y. Zhang, Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1627-1637.
61. Derycke, A.S.L. and P.A.M. de Witte, Liposomes for photodynamic therapy. Advanced Drug Delivery Reviews, 2004. 56(1): p. 17-30.
62. Yuan, F., et al., Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research, 1995. 55(17): p. 3752-3756.
63. Needham, D., T.J. McIntosh, and D.D. Lasic, Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1992. 1108(1): p. 40-48.
64. van Nostrum, C.F., Polymeric micelles to deliver photosensitizers for photodynamic therapy. Advanced Drug Delivery Reviews, 2004. 56(1): p. 9-16.
65. Bugaj, A.M., Targeted photodynamic therapy - a promising strategy of tumor treatment. Photochemical & Photobiological Sciences, 2011. 10(7): p. 1097-1109.
66. Konan, Y.N., et al., Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. European Journal of Pharmaceutical Sciences, 2003. 18(3–4): p. 241-249.
67. Hamblin, M.R., et al., Pegylation of a Chlorine6 Polymer Conjugate Increases Tumor Targeting of Photosensitizer. Cancer Research, 2001. 61(19): p. 7155-7162.
68. Vaidya, A., et al., Contrast-Enhanced MRI-Guided Photodynamic Cancer Therapy with a Pegylated Bifunctional Polymer Conjugate. Pharmaceutical Research, 2008. 25(9): p. 2002-2011.
69. Slowing, I.I., et al., Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials, 2007. 17(8): p. 1225-1236.
70. Bechet, D., et al., Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in Biotechnology, 2008. 26(11): p. 612-621.
71. Roy, I., et al., Ceramic-Based Nanoparticles Entrapping Water-Insoluble Photosensitizing Anticancer Drugs: A Novel Drug−Carrier System for Photodynamic Therapy. Journal of the American Chemical Society, 2003. 125(26): p. 7860-7865.
72. Neuberger, T., et al., Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 2005. 293(1): p. 483-496.
73. Veiseh, O., J.W. Gunn, and M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 2010. 62(3): p. 284-304.
74. Kumar, M.N.V.R., et al., Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 2004. 104(12): p. 6017-6084.
75. Hee Kim, E., et al., Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2005. 289(0): p. 328-330.
76. Bhattarai, S.R., et al., Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line. Journal of Virological Methods, 2008. 147(2): p. 213-218.
77. Park, J.W., et al., Clustered Magnetite Nanocrystals Cross-Linked with PEI for Efficient siRNA Delivery. Biomacromolecules, 2010. 12(2): p. 457-465.
78. Kircheis, R., L. Wightman, and E. Wagner, Design and gene delivery activity of modified polyethylenimines. Advanced Drug Delivery Reviews, 2001. 53(3): p. 341-358.
79. Kievit, F.M., et al., PEI–PEG–Chitosan-Copolymer-Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, Complexation, and Transfection. Advanced Functional Materials, 2009. 19(14): p. 2244-2251.
80. Chen, H., et al., Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Research, 2010. 3(12): p. 852-862.
81. Xie, J., et al., PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010. 31(11): p. 3016-3022.
82. Jain, T.K., et al., Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials, 2008. 29(29): p. 4012-4021.
83. Zhang, J., et al., On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomaterialia, 2008. 4(1): p. 40-48.
84. Yang, X., et al., Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer, 2008. 49(16): p. 3477-3485.
85. Huang, P., et al., Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials, 2011. 32(13): p. 3447-3458.
86. Park, J.H., et al., Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 2010. 62(1): p. 28-41.
87. Laurent, S., et al., Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 2011. 166(1–2): p. 8-23.
88. Jordan, A., et al., The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology, 2006. 78(1): p. 7-14.
89. Satarkar, N.S. and J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. Journal of Controlled Release, 2008. 130(3): p. 246-251.
90. Haas, H.C., N.W. Schuler, and R.L. Macdonald, Oxidized polyethylenimine. Journal of Polymer Science Part A-1: Polymer Chemistry, 1972. 10(11): p. 3143-3158.
91. Bartholomew, R.F. and R.S. Davidson, The photosensitised oxidation of amines. Part II. The use of dyes as photosensitisers: evidence that singlet oxygen is not involved. Journal of the Chemical Society C: Organic, 1971(0): p. 2347-2351.
92. Davidson, R.S. and K.R. Trethewey, Photosensitised oxidation of amines: mechanism of oxidation of triethylamine. Journal of the Chemical Society, Perkin Transactions 2, 1977(2): p. 173-178.
93. Xu, Z., et al., Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 2009. 21(9): p. 1778-1780.
94. Uppal, A., et al., Photodynamic Action of Rose Bengal Silica Nanoparticle Complex on Breast and Oral Cancer Cell Lines. Photochemistry and Photobiology, 2011. 87(5): p. 1146-1151