簡易檢索 / 詳目顯示

研究生: 李翊瑋
Lee, Yi-Wei
論文名稱: Magnetic Structure and Transition of 15R-BaMnO3-x Studied by Resonant Soft X-ray Scattering
以軟X 光共振散射研究15R-BaMnO3-x之磁性結構與相變
指導教授: 黃迪靖
Huang, Di-Jing
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 79
中文關鍵詞: 磁性相變軟X光共振散射同步輻射X光吸收光譜電子結構磁性結構多鐵材料過度金屬氧化物鈣鈦礦結構
外文關鍵詞: magnetic transition, resonant soft x-ray scattering, transition metal oxide, x-ray absorption spectrum, synchrotron, two circle diffractometer, multiferroics, spiral magnetic order
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Competitions between magnetic interactions in the ground states are typically the
    driving forces of unexpected electronic phenomena of a magnetic system. Manganese
    oxides with the AMnO3 (A = La, Sr, etc.) perovskite structure are examples of these materials. They are often strongly correlated electron systems in which the interplay between spin, charge, orbital, and lattice degrees of freedom play a crucial role in determining their physical properties. Through the variation of the Mn-O-Mn bond angle and the oxidation state of Mn ions between 3+ and 4+, these manganites display various ground states, such as anti-ferromagnetic charge/orbital-ordered insulator or ferromagnetic metal.

    Using resonant soft X-ray scattering, we revealed the magnetic properties of 15R-BaMnO3-x, which is expected to exhibit interesting multiferroic features. Our results of magnetic scattering provide evidence for the magnetic structure and transition of this system. Results of X-ray magnetic scattering do not depend on X-ray helicities; the magnetic structure of 15R-BaMnO3 is not spiral, unlike a spiral hexaferrite, Ba0.5Sr1.5Zn2Fe12O22.


    在磁性材料中,磁性基態的交互競爭是決定電子特性的主要因素。擁有鈣鈦礦結構的錳氧化物材料AMnO3 (A = La, Sr, etc.) 就是很好的例子;這類強關聯電子材料中,電子的電荷、自旋、軌域與晶體結構強烈的交互作用,並扮演著決定這些材料物理性質的關鍵角色。舉例來說,經由錳-氧-錳的鍵結角度及錳三價與錳四價氧化態的變化,這些錳氧化物可以表現出很多不同的磁性基態,如反鐵磁、電荷有序與軌域有序的絕緣體或鐵磁的導體以及多鐵現象;所以這類材料的磁性結構是很有趣的。

    為了瞭解這類材料有趣的磁性結構,我們藉由軟X光共振散射實驗,探討一個預期擁有多鐵性質的15R-BaMnO3-x之磁性性質,了解其磁性結構與磁相變。進一步,我們利用不同旋光性的共振磁散射實驗,確認15R-BaMnO3-x並不具有螺旋狀的磁性結構。

    Contents 1 Introduction of AMnO3 and Multiferroics 6 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Fundamental Lattice Features in the Perovskite Manganites . . . . . 9 1.3 Classi cation of Anti-ferromagnetic Structures . . . . . . . . . . . . . 11 1.4 Mutiferroics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Experimental Techniques and Set-ups 20 2.1 Synchrotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Soft X-ray Absorption Spectroscopy (XAS) . . . . . . . . . . . . . . . 24 2.2.1 Basics of soft X-ray Absorption Theory . . . . . . . . . . . . . 24 2.2.2 XAS of Transition-Metal Oxides . . . . . . . . . . . . . . . . . 27 2.3 Experiment Set-ups of XAS . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Resonant Soft X-Ray Scattering (RSXS) . . . . . . . . . . . . . . . . 31 2.4.1 Basics of X-ray Scattering . . . . . . . . . . . . . . . . . . . . 31 2.4.2 Resonant Soft X-ray Scattering . . . . . . . . . . . . . . . . . 33 2.5 Experiment Set-ups of RSXS . . . . . . . . . . . . . . . . . . . . . . . 42 3 Structure Characterizations of 15R-BaMnO3-x (BMO) Crystal 48 3.1 Introduction to BaMnO3 Series . . . . . . . . . . . . . . . . . . . . . 49 3.2 The Structure of 15R-BaMnO3-x . . . . . . . . . . . . . . . . . . . . 50 3.3 Hard X-Ray Di raction Experiment . . . . . . . . . . . . . . . . . . . 51 4 Magnetic Structure and Magnetic Transition of 15R-BaMnO3-x 56 4.1 X-Ray Absorption Spectrum of 15R-BaMnO3-x . . . . . . . . . . . . 57 4.1.1 Oxygen K-edge Absorption Spectrum . . . . . . . . . . . . . . 57 4.1.2 Manganese L-edge Absorption Spectrum . . . . . . . . . . . . 60 4.1.3 Barium M-edge Absorption Spectrum . . . . . . . . . . . . . 63 4.2 Magnetic Soft X-ray Scattering . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Magnetic Scattering of 15R-BaMnO3-x . . . . . . . . . . . . . 64 4.2.2 Soft X-ray Magnetic Scattering with pi and sigma polarization . . . 67 4.2.3 Temperature Dependence of Magnetic Peak . . . . . . . . . . 69 4.2.4 Measurements of Magnetic Structure with Right and Left Cir-cularly Polarized Light . . . . . . . . . . . . . . . . . . . . . . 74 5 Conclusions 78

    [1] J. Orenstein and A. J. Millis, Science 288, 468 (2000).
    [2] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
    [3] C. Zener, Phys. Rev. 82, 403 (1951).
    [4] J. Vleck, J. Chem. 7, 72 (1955).
    [5] J. Goodenough, Phys. Rev. 100, 564 (1955).
    [6] Y. Ito and J. Akimitsu, J. Phys. Soc. Jpn. 40, 1333 (1976).
    [7] A. Millis, B. Shraiman, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
    [8] M. Kataoka and M. Tachiki, Physical B 24, 347 (1997).
    [9] Zumdahl and S. S., Chemical Principles, Fifth Edition., Houghton Miin
    Company, 550-551,957-964., 2005.
    [10] T. Kimura et al., Nature 426, 55 (2003).
    [11] G. Lawes et al., Phys. Rev. Lett. 95, 087205 (2005).
    [12] T. Kimura, Annu. Rev. Mater. Res. 37, 387413 (2007).
    [13] Y. Tokura, SCIENCE 312, 1481 (2006).
    [14] S. W. Cheong and M. Mostovoy, Nature Material 6, 13 (2007).
    [15] P. Woodward, Acta. Cryst., B53 32-43, 1997.
    [16] M. Johnsson and P. Lemmens, Crystallography and Chemistry of Perovskites.
    [17] W. .Bao, C. H. Chen, S. A. Carter, and S. W. Cheong, Solid state Commun.
    98, 55 (1996).
    [18] Anthony.R.West, Basic Solid State Chemistry, J.W.and D. Ltd,55-59,364-366,
    1999.
    [19] L. Nel, Annales de chimie et de physique 3, 137 (1948).
    [20] T. Kimura et al., Phys. Rev. B 67, 180401 (2003).
    [21] T. Katsufuji et al., Phys. Rev. B 64, 104419 (2001).
    [22] B. B. V. Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nature
    Materials 3, 164 (2004).
    [23] N. Hur et al., Nature 429, 392 (2005).
    [24] Y. J. Choi et al., Phys. Rev. Lett. 102, 067601 (2009).
    [25] I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
    [26] I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett. 97, 227204 (2006).
    [27] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205
    (2005).
    [28] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 74, 224444 (2006).
    [29] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).
    [30] J. Okamoto et al., Phys. Rev. Lett. 98, 157202 (2007).
    [31] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
    [32] http://www.nsrrc.org.tw/english/index.aspx.
    [33] E.-E. Koch, editor, Handbook on synchrotron radiation, Vol 1a, chapter 2,
    North-Holland, 1983.
    [34] G. V. Marr, editor, Handbook on synchrotron radiation, Vol 2, chapter 1,
    North-Holland, 1987.
    [35] J. D. Jackson, Classical Electrodynamics, WILEY, 2001.
    [36] C. T. Chen and F. Sette, Rev. Sci. Instrum. 60, 1616 (1989).
    [37] C. T. Chen, Nucl. Instrum. Meth. A 256, 595 (1987).
    [38] J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics, John
    Wiley and Sons, Ltd, 2001.
    [39] J. J. Sakura, Modern Quantum Mechanicss, Addospm-Wesley, 1967.
    [9] M. Blume, J. Appl. Phys. 57, 3615 (1985).
    [40] C. Vettier, Journal of Electron Spectroscopy and Related Phenomena 117-118,
    113 128 (2001).
    [41] J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, Phys. Rev. Lett. 61,
    1245 (1988).
    [42] D. J. Huang, J. Okamoto, S. W. Huang, and C. Y. Mou, Physical Society of
    Japan 79, 011009 (2010).
    [43] J. J. Adkin and M. A. Hayward, Chem. Mater. 19, 755 (2007).
    [44] T. Negas and R. S. Roth, J. Solid State Chem. 3, 323 (1971).
    [45] G.-C. J. M. et al:, Solid State Chem. 106, 99 (1993).
    [46] J. Hadermann, A. M. Abakumov, J. J. Adkin, and M. A. Hayward, J. AM.
    CHEM. SOC. 131, 1059810604 (2009).
    [47] McKie and Duncan, Essentials of crystallography.
    [48] F. M. F. de Groot et al., Phys. Rev. B 40, 57155723 (1989).
    [49] J. van Elp and A. Tanaka, Phys. Rev. B 60, 53315339 (1999).
    [50] A. Y. Ignatov, N. Ali, and S. Khalid, Phys. Rev. B 64, 014413 (2001).
    [51] F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev.
    B 42, 54595468 (1990).
    [52] F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev.
    B 41, 928937 (1990).
    [53] T. Ziegler, Chem. Rev. 91, 651 (1991).
    [54] B. Gilbert et al., J. Phys. Chem. A 107, 2839 (2003).
    [55] K. S. Chao, Charge, Orbital, and spin Order of Transition{Metal Oxides(PhD
    Theis), National Chiao Tung University, 2007.
    [56] J. J. Adkin and M. A. Hayward, Chem. Mater. 19, 755 (2007).
    [57] J. Okamoto et al., Phys. Rev. Lett. 98, 157202 (2007).
    [58] J. M. Rondinelli, A. S. Eidelson, and N. A. Spaldin, Phys. Rev. B 79, 205119
    (2009).
    [59] S. W. Lovesey, E. Balcar, and Y. Tanaka, J. Phys. Condens. Matter 20, 272201
    (2008).
    [60] A. M. Mulders et al., Phys. Rev. B 81, 092405 (2010).
    [61] T. Kaplan, unpublished (2007).
    [62] D. J. Huang, Handbook of 2st APCTP workshop on multiferroics, 2010.
    [63] E. Tsuji et al., J. Phys. Soc. 65, 610 (1996).
    [64] T. Kimura, G. Lawes, and A. P. Ramirez, Phy. Rev. Lett. 94, 137201 (2005).
    [65] J. M. Rondinelli, A. S. Eidelson, and N. A. Spaldin, Phys. Rev. B 79, 205119
    (2009).
    [66] D. J. Huang et al., Phys. Rev. Lett. 96 (2006).
    [67] S. W. Huang et al., Phy. Rev. Lett. 101, 077205 (2008).
    [68] J. J. Adkin and M. A. Hayward, Chem. Mater. 19, 755 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE