研究生: |
李顓廷 Lee, Chuan-Ting |
---|---|
論文名稱: |
基於模糊目標規劃的長期碳稅政策制定之決策支援分析:以台灣為例 Scenario Analysis of the Effects of Carbon Taxes on Different Industries Based on Fuzzy Goal Programming with a Case of Taiwan |
指導教授: |
王小璠
Wang, Hsiao-Fan 李雨青 Lee, Yu-Ching |
口試委員: |
郭財吉
Kuo, Tsai-Chi 胡承方 Hu, Cheng-Feng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 碳稅 、投入產出模型 、Cobb-Douglas 生產函數 、目標規劃 、模糊多目標規劃 |
外文關鍵詞: | Carbon Tax, Input-Output Equilibrium Theory, Cobb-Douglas Production Theory, Goal Programming, Fuzzy Multi Goal Programming |
相關次數: | 點閱:50 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球暖化和氣候變遷的影響,越來越多國家承諾於 2050 年實現淨零碳排,其中需要在 2030 年減少相較於 2005 年一半的碳排放量,才能將全球溫升控制在 1.5°C 以下。碳稅是減少碳排放的一種有效的方式,但如何確定有效的稅率並評估其可能產生在經濟和社會福利的負面影響,已成為一個重要議題。本研究旨在分析不同產業在不同的碳稅下對 GDP、碳排放、社會福利的影響,並提供決策支援。基於Leontief的投入產出均衡理論和 Cobb-Douglas 生產理論,採用模糊多目標規劃模型分析在不同碳稅情境下三個目標的實現情況和產業結構。為了闡明決策者對決策的偏好,採用網路分析程序法(ANP)並進行敏感性分析以確保穩健性。分析結果可以幫助決策者評估不同碳稅情境的長期影響,並選擇最合適的稅率,進而製定相關政策以實現 2030 年和 2050 年的目標。本研究透過台灣的產業進行說明和驗證。
With the impact of global warming and climate change, net zero carbon emission by 2050 has been committed by a growing coalition of countries, of which about half of emission cuts from 2005 and must be in place by 2030 to keep warming below 1.5°C. Carbon tax is a way to reduce carbon emissions, but how to set an effective tax rate and assess its possible negative effects, such as economic and social welfare, has become a significant issue. This study aims to analyze the impact of different carbon tax scenarios on GDP, carbon emissions, social welfare with different industries, and to provide decision support. Based on Leontief's Input-Output Equilibrium Theory and Cobb-Douglas Production Theory, a fuzzy multi-goal programming model has been adopted to analyze the realization of the three goals and industrial structure under different carbon tax scenarios. To utilize the scenarios for policy making, a decision support procedure is proposed and demonstrated by using Taiwan domestic industries as an example. The decision maker’s preference is first articulated by the Analytic Network Process (ANP). Then, the sensitivity analysis is carried out to test the robustness. The results of the analysis can be shown to effectively assist a policymaker in assessing the impact of different carbon tax scenarios in the long run, and then to formulate relevant policies on tax rate to achieve the goals at 2030 and 2050.
王小璠 (2005) 多準則決策分析 滄海書局
邱凡玶 (2021) 國際企業內部碳定價作法初探https://km.twenergy.org.tw/ReadFile/?p=KLBase&n=9f9229d69efe4bcaa2d6a376e53d732d.pdf
ESG遠見 (2022) 碳定價時代來臨 https://esg.gvm.com.tw/article/14384
ESG遠見 (2022) 碳費最快2024年上路!財部:關注CBAM、評估是否課碳稅 https://esg.gvm.com.tw/article/13554
Aldy, Joseph E. (2015). Pricing climate risk mitigation. Nature Climate Change, 5(5), 396–398. doi:10.1038/nclimate2540
Bento, N., & Gianfrate, G. (2020). Determinants of internal carbon pricing. Energy Policy, 143, 111499. doi:10.1016/j.enpol.2020.111499
Borges, A. R., & Antunes, C. H. (2003). A fuzzy multiple objective decision support model for energy-economy planning. European Journal of Operational Research, 145(2), 304–316.
Boyce, J. K. (2018). Carbon Pricing: Effectiveness and Equity. Ecological Economics, 150, 52–61. doi:10.1016/j.ecolecon.2018.03.030
Carattini, S.; Carvalho, M.; Fankhauser, S. (2018). Overcoming public resistance to carbon taxes. Wiley Interdisciplinary Reviews: Climate Change, (?), e531–. doi:10.1002/wcc.531
CBAM (2021) Carbon Border Adjustment Mechanism: Questions and Answers
https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_3661
CCA (2022) Clean Competition Act https://www.congress.gov/bill/117th-congress/senate-bill/4355/text
CDP (2021),Putting a Price on Carbon:The state of internal carbon pricing by corporates globally. https://6fefcbb86e61af1b2fc4-c70d8ead6ced550b4d987d7c03 fcdd1d.ssl.cf3.rackcdn.com/cms/reports/documents/000/005/651/original/CDP_Glob al_Carbon_Price_report_2021.pdf?1618938446
Chang, C.L.; Mai, T.K., McAleer, M. (2019). Establishing national carbon emission prices for China. Renewable and Sustainable Energy Reviews, 106, 1–16. doi:10.1016/j.rser.2019.01.063
Chiu, Y.T., Lee, Y.C., Wang H.F. (2021). Realization of Circular Economy by Tuning Input-Output Matrix – An Optimal Approach, Intl. J. of Operations Research, 18(3), 67-77, doi.org/10.6886/IJOR.202109_18(3).0002.
Choi, J.K.; Bakshi, B.R.; Hubacek, K.; Nader, J. (2016). A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies. Applied Energy, S0306261916306274. doi:10.1016/j.apenergy.2016.05.033
Colapinto, C., Jayaraman, R. Marsiglio, S. (2017). Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review. Annals of operations research, 251(1-2), 7-40. doi:10.1007/s10479-015-1829-1
COP26 (2021) COP26-explained. https:// ukcop 26. org/ wp- content/uploads/ 2021/ 07/ COP26- Explained. pdf. Accessed 15 Jan 2022
COP27 (2022) COP27-explained. https://www.un.org/en/climatechange/cop27
Cottier, T., Aerni, P., Karapinar, B., Matteotti, S., de Sépibus, J., & Shingal, A. (2014). The Principle of Common Concern and Climate Change. Archiv Des Völkerrechts, 52(3), 293–324.
ESG (2022). The era of carbon pricing is coming. Foresight https://esg.gvm.com.tw/article/14384
Greenpeace (2021). The net zero game is coming: report on the impact of international carbon border tax on Taiwan, https://www.greenpeace.org
Hashmi, R., Alam, K. (2019). Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. Journal of Cleaner Production, S095965261931861X–. doi:10.1016/j.jclepro.2019.05.325
Hsu, G. J. Y., & Xu, H.-M. (2000). Impact of mitigating CO2 emissions on Taiwan’s economy: a fuzzy multiobjective programming approach. Environmental Economics and Policy Studies, 3(3), 335–345. doi:10.1007/bf03354044
Ilgin, M. A., Gupta, S. M. et Battaïa, O. (2015). Use of MCDM techniques in environmentally conscious manufacturing and product recovery: State of the art. Journal of manufacturing systems, 37, 746 758.
IPCC (1996) Climate Change 1995; The Science of Climate Change. Contribution of working group I to the Third Assessment Report of the IPCC.p.4, Cambridge University Press, Cambridge, UK
Islam, S. M. N., and M. Clarke (2002). The relationship between economic development and social welfare: a new adjusted GDP measure of welfare. Social Indicators Research, 57(2), 201–228.
Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596–609. doi:10.1016/j.rser.2016.11.191
Lee C.F., Lin S.J., Lewis C., Chang Y.F. (2007) Effects of carbon taxes on different industries by fuzzy goal programming: a case study of the petrochemical-related industries, Taiwan. Energy Policy 35(8):4051–4058
Leontief, W., Ford, D., (1972). Air pollution and the economic structure: empirical results of input–output economics. In: Brody, A., Carter, A.P. (Eds.), Input–Output Techniques. pp. 9–30
Liddle, B. (2011). Consumption-driven environmental impact and age structure change in OECD countries: A cointegration-STIRPAT analysis. DEMOGRAPHIC RESEARCH volume 24, article 30, pages 749-770
Lin, P. P., Li, D. F., Jiang, B. Q., Wei, A. P. et Yu, G. F. (2019). Regional Input–Output Multiple Choice Goal Programming Model and Method for Industry Structure Optimization on Energy Conservation and GHG Emission Reduction in China. International journal of computational intelligence systems, 12(2), 1311. doi:10.2991/ijcis.d.191104.002
Liu, X., Ogisu, K., Suk, S., Shishime, T. (2011). Carbon tax policy progress in north-east Asia. Environmental Taxation in China and Asia-Pacific: Achieving Environmental Sustainability through Fiscal Policy, Edward Elgar Publishing, Inc., Northampton, (2011), p.103-118 10.4337/9780857937766.00020.
Liu J., Bai J., Deng Y., Chen X., Liu X. (2020). Impact of energy structure on carbon emission and economy of China in the scenario of carbon taxation, Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2020.143093
Macaluso, N., Tuladhar, S., Woollacott, J., McFarland, J. R., Creason, J., & Cole, J. (2018). The impact of carbon taxation and revenue recycling on u.s. industries. Climate change economics, 9(1).
Mardones, C., Baeza, N. (2018). Economic and environmental effects of a CO2 tax in Latin American countries. Energy Policy, 114, 262–273. doi:10.1016/j.enpol.2017.12.001
Mardones, C. (2020). Analysis on complementarity between a CO2 tax and an emissions trading system to reduce industrial emissions in Chile. Energy & Environment, 0958305X2095419. doi:10.1177/0958305x20954197
Mardones, C., Mena, C. (2020). Effects of the internalization of the social cost of global and local air pollutants in Chile. Energy Policy, 147, 111875. doi:10.1016/j.enpol.2020.111875
Metcalf, G. E., & Weisbach, D. (2009). The design of a carbon tax. Harvard Environmental Law Review,33, 499–556.
National Development Council, “Taiwan’s Pathway to Net-Zero Emissions in 2050”. https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811 (2022).
Paris Agreement (2015) Report of the conference of the parties to the united nations framework convention on climate change. https://unfccc. int/ files/ essen tial_ backg round/ conve ntion/ appli cation/pdf/ engli sh_ paris_ agree ment. pdf. Accessed 10 Feb 2022
Raja J., Danilo L., Cinzia C., Tufail M. (2015). A fuzzy goal programming model to analyze energy, environmental and sustainability goals of the United Arab Emirates. Annals of Operations Research, 251(1-2), 255–270. doi:10.1007/s10479-015-1825-5
San Cristóbal, J. R. (2012). A goal programming model for environmental policy analysis: Application to Spain. Energy Policy, 43, 303–307. doi:10.1016/j.enpol.2012.01.007
Santos, M.J., Ferreira, P., Araújo, M., Portugal-Pereira, J., Lucena, A., Schaeffer, R. (2016). Low-carbon scenarios for the Brazilian power system. 3rd International Conference on Project Evaluation (ICOPEV), 16-17 June 2016, Guimarães, Portugal. pp 113-117.
Schulze, E.-D., Valentini, R., & Sanz, M.-J. (2002). The long way from Kyoto to Marrakesh: Implications of the Kyoto Protocol negotiations for global ecology. Global Change Biology, 8(6), 505–518.
Shaw, D.G (2021). Taiwan’s 2050 net-zero emissions pathway. From Science to Political Forum: Climate Change and Net Zero Emissions, Taipei City, Taiwan, December 10.
Shuai, C., Chen, X., Wu, Y., Tan, Y., Zhang, Y., Shen, L. (2018). Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. Journal of Cleaner Production, 175, 612–623. doi:10.1016/j.jclepro.2017.12.097
Sigit P., Marc V. (2022). Making the EU carbon border adjustment mechanism acceptable and climate friendly for least developed countries, Energy Policy, Volume 170.
Sommer, Stephan; Mattauch, Linus; Pahle, Michael (2020). Supporting carbon taxes: The role of fairness, Ruhr Economic Papers, No. 873, ISBN 978-3-96973-010-2
Statistic Bureau (2016). Taiwan. Input-output tables of Taiwan. Retrieved from https://www.stat.gov.tw/ct.asp?xItem=44853&ctNode=671
Statistic Bureau, Taiwan (2016). “Industry-related statistics compilation report of Taiwan”. Retrieved from: https://www.stat.gov.tw/ct.asp?xItem=46641&ctNode=1309&mp=4
Stretton, Stephen, 2020, A simple methodology for calculating the impact of a carbon tax. MTI Discussion paper; No.23, World Bank, Washington, DC.”
Tan, Q., Wang T., Zhang Y., Miao X., Zhu J., (2017). Nonlinear multi-objective optimization model for a biomass direct-fired power generation supply chain using a case study in China. Energy 139:1066–79.
Tian, Y., Xiong, S., Ma, X., (2017). Analysis of the Potential Impacts on China’s Industrial Structure in Energy Consumption. Sustainability 9, 2284.
Uddin, G. A., Alam, K., Gow, J. (2016). Estimating the major contributors to environmental impacts in Australia. Journal of Ecological Economics and Statistics, 37 (1): 1-14. ISSN 0973-1385(print); 0973-7537 (online).
Wang, J.J., Jing, Y.Y., Zhang, C.F., & Zhao, J.H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. doi:10.1016/j.rser.2009.06.021
Wang, L. (2020). The Application of Douglas Production Function in Urban Local Economic Growth Management Under Computer Big Data. Journal of Physics: Conference Series, 1578(1), 012117. IOP Publishing.
Wesseh, P.K.; Lin, B. (2018). Carbon pricing and general equilibrium under Leontief production technology. Journal of Cleaner Production, 190, 368–377. doi:10.1016/j.jclepro.2018.04.100
World Bank. 2022. State and Trends of Carbon Pricing 2022. State and Trends of Carbon Pricing; Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/37455 License: CC BY 3.0 IGO.”
Wood J, (2018). The Pros and Cons of Carbon Taxes and Cap-and-Trade Systems. The School of Public Policy Publications, volume 11:30.
Xie, J., Dai, H., Xie, Y., Hong, L. (2018). Effect of carbon tax on the industrial competitiveness of Chongqing, China. Energy for Sustainable Development, 47, 114–123. doi:10.1016/j.esd.2018.09.003
Yang C., Yan X. (2023). Impact of carbon tariffs on price competitiveness in the era of global value chain, Applied Energy, Volume 336.
Zakeri, A.; Dehghanian, F.; Fahimnia, B.; Sarkis, J. (2015). Carbon pricing versus emissions trading: A supply chain planning perspective. International Journal of Production Economics, 164, 197–205. doi:10.1016/j.ijpe.2014.11.012
Zhang, X., & Wang, Y. (2017). How to reduce household carbon emissions: A review of experience and policy design considerations. Energy Policy, 102, 116–124. doi:10.1016/j.enpol.2016.1
Zimmermann Н. (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Systems 1(1):45-56.