簡易檢索 / 詳目顯示

研究生: 謝翊群
HSIEH, I CHUN
論文名稱: 利用光學天線結構達成光頻譜與偏振態之解析
Analysis of Optical Spectrum and Polarization by Plasmonic Optical Antenna
指導教授: 黃承彬
口試委員: 黃承彬
黃哲勳
田仲豪
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 55
中文關鍵詞: 電漿子偏振態解析可調變光場控制
外文關鍵詞: Plasmonics, Polarization analysis, Adaptive optical field control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文利用經過設計的光學天線結構,以不同的天線尺寸以及光學天線排列方式分別達到解析不同入射光源頻率及偏振態之目的,為了得到較佳的解析能力,使用有限差分時域法模擬單一長條天線與長條天線對的光譜響應與近場能量分布,藉由調整長條狀天線排列方式(例如天線長軸方位角、長條對天線間間隔長度)與天線大小(包括天線長度、寬度及厚度)得到較佳的頻譜響應。若以相同光源激發不同幾何參數的天線陣列,當入射光源的頻率對應到該結構頻率響應峰值時,在結構附近將得到較強的近場光學訊號並藉由空間上近場訊號分布分辨入射光之波長;若考慮入射光偏振態,相同長條結構天線來說,電場方向平行於天線長軸相較於電場垂直天線長軸擁有較大的響應能力,因此亦可藉由不同的天線排列區分激發光源的偏振態。
    實驗樣品以金作為結構材質配合電子束微影在玻璃基板上製作奈米天線陣列,量測上採用收集式近場掃描光學顯微鏡,以近紅外光波段光源經全反射光路產生之漸逝波做為遠場激發光源,再利用剪力回饋的方式量測天線陣列結構之近場光學訊號分布並與數值模擬結果比對。


    Abstract
    In this work, we use a designed optical antenna structure to analyze the frequency and polarization with varied antenna size and arrangement, respectively. First, we simulate the spectral response and near-field intensity distribution of single- and two-wire antenna using finite-difference time domain method. By modifying the antenna arrangement, such as the azimuth of long axis of the antenna, the gap width of two-wire antenna and the size of optical antenna, then we can have a better response to distinguish the different light. We illuminate the antenna array with different geometric condition at the same time. There is more powerful near-field optical signal nearby the structure when the frequency of incident light is corresponding to the resonance peak of spectrum. Considering the polarization of incident, when polarization is parallel to antenna’s long axis, the enhancement will be larger than the polarization perpendicular to antenna’s long axis, and then we can tell the difference of the wavelength and polarization of incoming light.
    We use electron beam lithography to design and fabricate gold nano-antenna array on the glass substrate. In the aspect of measurement, we utilize the collection mode near-field scanning optical microscope with total internal refection set-up to obtain the real near-field intensity distribution around the optical antenna by shearing force feedback.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VI 第一章 序論 1 1.1 前言 1 1.2 研究目的與動機 2 1.3 論文架構概述 5 第二章 電漿子偏振元件簡介與模擬 7 2.1 金屬於光頻率下的行為 8 2.2 光學天線的理論模型 11 2.2.1 Mass-and-spring model 13 2.2.2 Fabry-Pérot model 16 2.3 電漿子偏振元件設計原理及數值模擬 18 第三章 元件製備與實驗量測 31 3.2 近場光學量測原理與實驗架構 38 3.3 量測結果與分析 42 第四章 結論與未來展望 50 參考文獻 53

    參考文獻
    1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396-402 (1902).
    2. U. Fano, "Some theoretical considerations on anomalous diffraction gratings," Physical Review 50, 573-573 (1936).
    3. U. Fano, "On the anomalous diffraction gratings II," Physical Review 51, 288-288 (1937).
    4. U. Fano, "On the theory of the intensity anomalies of diffraction," Annalen Der Physik 32, 393-443 (1938).
    5. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America 31, 213-222 (1941).
    6. R. H. Ritchie, "PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS," Physical Review 106, 874-881 (1957).
    7. H. A. Atwater, "The promise of plasmonics," Scientific American 296, 56-63 (2007).
    8. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters 81 (2002).
    9. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Physical Review B 67 (2003).
    10. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Applied Physics Letters 86 (2005).
    11. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453 (2008).
    12. T. Hanke, G. Krauss, D. Traeutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, "Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses," Physical Review Letters 103 (2009).
    13. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
    14. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Struber, and D. V. Voronine, "Spatiotemporal control of nanooptical excitations," Proceedings of the National Academy of Sciences of the United States of America 107, 5329-5333 (2010).
    15. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
    16. P. Bharadwaj, B. Deutsch, and L. Novotny*, "Optical antennas," Advances in Optics and Photonics 1, 438-483 (2009).
    17. L. Novotny, "From near-field optics to optical antennas," Physics Today 64 (2011).
    18. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, "Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes," Physical Review B 80 (2009).
    19. Q. Gan, Y. J. Ding, and F. J. Bartoli, ""Rainbow" Trapping and Releasing at Telecommunication Wavelengths," Physical Review Letters 102 (2009).
    20. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, "Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings," Proceedings of the National Academy of Sciences of the United States of America 108 (2011).
    21. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, "Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies," Applied Physics Letters 97 (2010).
    22. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Physical Review Letters 100 (2008).
    23. Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," Ieee Journal of Selected Topics in Quantum Electronics 14 (2008).
    24. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature 450 (2007).
    25. G. Leveque, and O. J. F. Martin, "Narrow-band multiresonant plasmon nanostructure for the coherent control of light: An optical analog of the xylophone," Physical Review Letters 100 (2008).
    26. T. Harada, K. Matsuishi, Y. Oishi, K. Isobe, A. Suda, H. Kawan, H. Mizuno, A. Miyawaki, K. Midorikawa, and F. Kannari, "Temporal control of local plasmon distribution on Au nanocrosses by ultra-broadband femtosecond laser pulses and its application for selective two-photon excitation of multiple fluorophores," Optics Express 19 (2011).
    27. P. Biagioni, J. S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics 75 (2012).
    28. P. B. Johnson, and R. W. Christy, "OPTICAL-CONSTANTS OF NOBLE-METALS," Physical Review B 6, 4370-4379 (1972).
    29. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," Journal of Chemical Physics 125 (2006).
    30. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
    31. E. S. Kooij, and B. Poelsema, "Shape and size effects in the optical properties of metallic nanorods," Physical Chemistry Chemical Physics 8, 3349-3357 (2006).
    32. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220 (2003).
    33. L. Novotny, "Effective wavelength scaling for optical antennas," Physical Review Letters 98 (2007).
    34. J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, "Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits," Physical Review B 79 (2009).
    35. E. Hecht, Optics (Addison-Wesley, 2002).
    36. http://kwsun7.ac.nctu.edu.tw/e-beam.htm, "E-beam lithography introduction."
    37. http://www.phys.sinica.edu.tw/~nanofacilities/ELS-7000.htm, "Core Facilities for Nanoscience & Nanotechnology."
    38. L. Rayleigh, "LVI. Investigations in optics, with special reference to the spectroscope," Philosophical Magazine Series 5 8, 477-486 (1879).
    39. L. Rayleigh, "XXXI. Investigations in optics, with special reference to the spectroscope," Philosophical Magazine Series 5 8, 261-274 (1879).
    40. L. Rayleigh, "V. Investigations in optics, with special reference to the spectroscope," Philosophical Magazine Series 5 9, 40-55 (1880).
    41. L. Novotny, "The history of near-field optics," Progress in Optics, Vol 50 50 (2007).
    42. 高宗聖, and 蔡定平, "近場光學新視界," (科學發展 386期 http://203.145.193.110/NSC_INDEX/Journal/EJ0001/9402/9402-03.pdf, 2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE