簡易檢索 / 詳目顯示

研究生: 陸哲軒
Thieme, Travis J.
論文名稱: 從克卜勒旋轉、吸積流、與非理想磁流體動力學探索原行星盤的形成與演化
Investigating the Formation and Evolution of Protostellar Disks via Keplerian Rotation, Streamers, and Non-Ideal MHD
指導教授: 賴詩萍
Lai, Shih-Ping
口試委員: 安德魯古柏
Cooper, Andrew
何英宏
Harsono, Daniel
李景輝
Lee, Chin-Fei
李悅寧
Lee, Yuen-Ning
大橋永芳
Ohashi, Nagayoshi
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 114
中文關鍵詞: 恆星形成原恆星盤長條狀氣體結構雙極擴散
外文關鍵詞: Star Formation, Protostellar Disks, Streamers, Ambipolar Diffusion
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 原恆星盤在將質量轉移到原恆星時扮演著重要角色,也是未來孕育新生行星之地。觀測結果顯示,仍然深埋在分子雲中並受旋轉支撐的原恆星盤在早期階段便從原恆星的包層中形成,並積極地吸積質量。然而,原恆星盤形成的環境因磁場和紊流的存在複雜化,磁流體力學的數值模擬也顯示磁場和紊流對於原恆星盤的是否能夠形成具有顯著的影響。本論文旨在分析幾個處於Class 0階段的原恆星,以了解原恆星盤如何通過吸積流從包層積累質量、極低質量原恆星的原恆星盤的早期演化,以及雙極擴散作用在其中所扮演的角色。
    在Lupus 3-MMS中,我使用簡單的三維旋轉塌縮模型,擬合在C$^{18}$O中找到的多個長條狀的氣體結構,得到質量塌縮速率介於$0.5$到$1.1\times10^{-6}\,M_\odot\,\mathrm{yr^{-1}}$之間。此結果與其他Class 0原恆星的觀測結果以及磁流體力學模擬一致,這表示此簡化的塌縮模型即提供一個良好的近似,可以產生與觀測大致相符的結果。在IRAS 15398-3359中,我將緊實而高速的SO發射譜線觀測結果與克卜勒旋轉曲線擬合進行運動學分析,發現其中心原恆星的質量極低,約為$0.034\,M_\odot$,且氣體原恆星盤半徑約為$\sim20\,\mathrm{au}$。根據原恆星質量的吸積率估計,IRAS 15398-3359的年齡小於13,000年。因此,原恆星盤的形成發生在非常早期的階段。在HOPS-370中,我使用了基於雙極擴散效應推導的原恆星盤半徑公式,估計HOPS-370原恆星盤邊緣的雙極擴散係數約為$\sim1.6\times10^{18}\,\mathrm{cm^{2}\,s^{-1}}$。這個結果對應的無因次Els\"{a}sser數約為$\sim2.4$,顯示雙極擴散效應在原恆星盤形成的過程中具有影響力。此外,我還使用了一個理論上自洽的方法計算雙極擴散係數,得到的數值與從觀測結果推導的一致。因此,在理解早期原恆星盤的演化時,應考慮非理想磁流體力學中磁場的擴散效應。


    Protostellar disks are important for transferring mass to the protostar, and are the future sites of planet formation. Observations of rotationally-supported protostellar disks in the deeply embedded stages of low-mass star formation show that they form early and are actively accreting mass from the natal protostellar envelope. However, these environments are complicated by magnetic fields and turbulence, which numerical MHD simulations show have a significant impact on whether these disks can even form. This thesis analyzes several Class 0 protostars to understand the envelope mass accretion via streamers, early disk evolution in an extremely low-mass protostar and the role of ambipolar diffusion in the disk environment.
    In Lupus 3-MMS, I model multiple extended gas structures found in C$^{18}$O using a simple, 3D rotating-collapse model. The mass-infall rates are between $0.5-1.1\times10^{-6}\,M_\odot\,\mathrm{yr^{-1}}$, which is consistent with other Class 0 sources and MHD simulations, indicating even a simplified infall model can be a good approximation when comparing to observations. In IRAS 15398-3359, I perform kinematic analysis by fitting the compact, high-velocity SO emission with a Keplerian rotation profile to reveal a gas disk radius of $\sim20\,\mathrm{au}$ around an extremely low-mass $\sim0.034\,M_\odot$ protostar. Using the protostellar mass-accretion rate, the age of IRAS 15398-3359 is estimated to be $<$13,000$\,$yr. Thus, protostellar disk formation happens in the very early stages.
    In HOPS-370, I use a previously derived analytical expression of the expected protostellar disk radius due to ambipolar diffusion to estimate the ambipolar diffusion coefficient to be $\sim1.6\times10^{18}\,\mathrm{cm^{2}\,s^{-1}}$ at the edge of the HOPS-370 disk. This yields a dimensionless Els\"{a}sser number for ambipolar diffusion of $\sim2.4$, indicating it is influencing the dynamics in this region. Additionally, when using a self-consistent method to calculate the ambipolar diffusion coefficient, it is consistent with the derived value. The diffusion of the magnetic field by non-ideal MHD effects should be considered when understanding the evolution of embedded protostellar disks.

    Contents Abstract (Chinese) ................................................................................ I Abstract ................................................................................................ II Acknowledgments ................................................................................ III Contents ............................................................................................... V List of Figures ....................................................................................... IX List of Tables ........................................................................................ XI 1 Introduction ....................................................................................... 1 1.1 The Formation of a Protostellar Disk ............................................... 1 1.1.1 Gravitational Collapse: A Simple Case .......................................... 1 1.1.2 Magnetized Collapse: a Complex Case ........................................ 2 1.2 Observations of Protostellar Environments .................................... 2 1.3 Thesis Overview ............................................................................. 4 1.3.1 Streamers in Class 0 Protostars................................................... 4 1.3.2 A Very Young Class 0 Protostellar Disk ....................................... 4 1.3.3 Ambipolar Diffusion in Protostellar Disk Environments ............... 5 2 Accretion Flows or Outflow Cavities? Uncovering the Gas Dynamics around Lupus 3-MMS 6 2.1 Abstract ......................................................................................... 6 2.2 Introduction ................................................................................... 7 2.3 Observations ................................................................................ 10 2.4 Results .......................................................................................... 11 2.5 Analysis......................................................................................... 13 2.5.1 The CMU Model ......................................................................... 13 2.5.2 Disk Properties and System Velocity ......................................... 16 2.5.3 Outflow Velocity Structure ......................................................... 16 2.5.4 Infall Velocity Structure .............................................................. 17 2.6 Discussion ..................................................................................... 23 2.6.1 Outflow Cavities or Accretion Flows? .......................................... 23 2.6.2 The Nature of S4 ........................................................................ 24 2.6.3 Degeneracy of the CMU Model .................................................. 25 2.6.4 Accretion Flow Properties and Comparison ............................... 28 2.6.5 The Origin of Accretion Flows ..................................................... 31 2.7 Conclusion ..................................................................................... 32 A Does the CMU Model Produce Streams? ......................................... 34 B PV Diagrams ..................................................................................... 34 C Column Density Maps ...................................................................... 36 3 A Small Protostellar Disk around the Extremely Low-Mass and Young Class 0 Protostar, IRAS 15398-3359 40 3.1 Abstract ......................................................................................... 41 3.2 Introduction ................................................................................... 42 3.3 Observations & Data Reduction .................................................... 44 3.4 Results .......................................................................................... 48 3.4.1 Dust Continuum .......................................................................... 48 3.4.2 Molecular Lines .......................................................................... 51 3.5 Analysis ......................................................................................... 54 3.5.1 Position-Velocity Diagrams ......................................................... 54 3.5.2 PV Analysis with SLAM: Overview .............................................. 56 3.5.3 PV Analysis with SLAM: Single Power-Law ................................. 57 3.5.4 PV Analysis with SLAM: Modified Single Power-Law .................. 60 3.5.5 PV Analysis with SLAM: Double Power-Law ................................ 61 3.6 Discussion ...................................................................................... 62 3.6.1 A Very Low-Mass Protostar and Disk ........................................... 62 3.6.2 Disk-to-Stellar Mass Ratio ........................................................... 64 3.6.3 Mass-Accretion Rate ................................................................... 65 3.6.4 A Proto-Brown Dwarf Candidate? ................................................ 66 3.6.5 An Extremely Small Protostellar Disk ........................................... 66 3.6.6 Dust vs. Gas Disk Radius ............................................................. 67 3.6.7 Specific Angular Momentum ........................................................ 67 3.6.8 A Dynamical Overview of the IRAS 15398-3359 Protostellar System .................................................................................................. 68 3.7 Conclusion ...................................................................................... 70 A Gallery of Dust Continuum Images .................................................... 73 B Channel Maps of Molecular Lines ...................................................... 73 C SB-only Images of Molecular Lines ................................................... 73 4 The First Estimation of the Ambipolar Diffusion Coefficient from Multi- Scale Observations of the Class 0/I Protostar, HOPS-370 ................... 80 4.1 Abstract .......................................................................................... 80 4.2 Introduction .................................................................................... 81 4.3 Methods ......................................................................................... 83 4.3.1 The Relation Between the Disk Radius and the Ambipolar Diffusion Coefficient ........................................................................................... 83 4.3.2 Previously Derived Disk Properties ............................................ 84 4.3.3 Estimating the Poloidal Magnetic Field Strength at the Edge of the Disk ............................................................................................... 85 4.4 Results .......................................................................................... 89 4.4.1 The First Estimation of the Ambipolar Diffusion Coefficient from Observations .............................................................................. 89 4.4.2 The Dimensionless Els¨asser Number for Ambipolar Diffusion . 90 4.4.3 Comparing with the Non-Ideal MHD Coefficient and Ionisation Library ................................................................................................ 91 4.5 Discussion .................................................................................... 97 4.5.1 Is Ambipolar Diffusion the Dominant Non-Ideal MHD Effect at the Edge of the HOPS-370 Protostellar Disk?.................................... 97 4.5.2 How Measurement Uncertainties Could Impact the Calculation of the Ambipolar Diffusion Coefficient? ............................................. 98 4.5.3 Non-Ideal MHD Simulations of Disk Formation and the Validity of this Method .................................................................................... 99 4.6 Conclusion ................................................................................... 100 5 Summary ......................................................................................... 102 Bibliography ....................................................................................... 104

    Bibliography

    Allen, A., Li, Z.-Y., & Shu, F. H. 2003a, ApJ, 599, 363, doi: 10.1086/379243
    Allen, A., Shu, F. H., & Li, Z.-Y. 2003b, ApJ, 599, 351, doi: 10.1086/379242
    ALMA Partnership, Brogan, C. L., P´erez, L. M., et al. 2015, ApJ, 808, L3, doi: 10.
    1088/2041-8205/808/1/L3
    Andrews, S. M., Wilner, D. J., Hughes, A. M., et al. 2012, ApJ, 744, 162, doi: 10.
    1088/0004-637X/744/2/162
    Andrews, S. M., Wilner, D. J., Zhu, Z., et al. 2016, ApJ, 820, L40, doi: 10.3847/
    2041-8205/820/2/L40
    Andrews, S. M., Huang, J., P´erez, L. M., et al. 2018, ApJ, 869, L41, doi: 10.3847/
    2041-8213/aaf741
    Ansdell, M.,Williams, J. P., van der Marel, N., et al. 2016, ApJ, 828, 46, doi: 10.3847/
    0004-637X/828/1/46
    Ansdell, M., Williams, J. P., Trapman, L., et al. 2018, ApJ, 859, 21, doi: 10.3847/
    1538-4357/aab890
    Aso, Y., & Machida, M. N. 2020, ApJ, 905, 174, doi: 10.3847/1538-4357/abc6fc
    Aso, Y., & Sai, J. 2023, jinshisai/SLAM: First Release of SLAM, v1.0.0, Zenodo,
    doi: 10.5281/zenodo.7783868
    Aso, Y., Ohashi, N., Saigo, K., et al. 2015, ApJ, 812, 27, doi: 10.1088/0004-637X/
    812/1/27
    Aso, Y., Ohashi, N., Aikawa, Y., et al. 2017, ApJ, 849, 56, doi: 10.3847/1538-4357/
    aa8264
    Bachiller, R. 1996, ARA&A, 34, 111, doi: 10.1146/annurev.astro.34.1.111
    Bally, J. 2016, ARA&A, 54, 491, doi: 10.1146/annurev-astro-081915-023341
    Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. 1990, AJ, 99, 924,
    doi: 10.1086/115385
    B ergin, E. A., & Tafalla, M. 2007, ARA&A, 45, 339, doi: 10.1146/annurev.astro.
    45.071206.100404
    Bjerkeli, P., Jørgensen, J. K., & Brinch, C. 2016a, A&A, 587, A145, doi: 10.1051/
    0004-6361/201527310
    Bjerkeli, P., Jørgensen, J. K., Bergin, E. A., et al. 2016b, A&A, 595, A39, doi: 10.
    1051/0004-6361/201628795
    Bourke, T. L., Myers, P. C., Robinson, G., & Hyland, A. R. 2001, ApJ, 554, 916,
    doi: 10.1086/321405
    Boyden, R. D., & Eisner, J. A. 2020, ApJ, 894, 74, doi: 10.3847/1538-4357/ab86b7
    Burrows, A., Marley, M., Hubbard, W. B., et al. 1997, ApJ, 491, 856, doi: 10.1086/
    305002
    CASA Team, Bean, B., Bhatnagar, S., et al. 2022, PASP, 134, 114501, doi: 10.1088/
    1538-3873/ac9642
    Caselli, P., Walmsley, C. M., Terzieva, R., & Herbst, E. 1998, ApJ, 499, 234, doi: 10.
    1086/305624
    Cassen, P., & Moosman, A. 1981, Icarus, 48, 353, doi: 10.1016/0019-1035(81)
    90051-8
    Chandrasekhar, S., & Fermi, E. 1953, ApJ, 118, 113, doi: 10.1086/145731
    Cheong, P.-I. 2018, Master’s thesis, National Tsing Hua University, Taiwan
    Chevalier, R. A. 1983, ApJ, 268, 753, doi: 10.1086/160997
    Codella, C., Cabrit, S., Gueth, F., et al. 2014, A&A, 568, L5, doi: 10.1051/
    0004-6361/201424103
    Commerc¸on, B., Gonz´alez, M., Mignon-Risse, R., Hennebelle, P., & Vaytet, N. 2022,
    A&A, 658, A52, doi: 10.1051/0004-6361/202037479
    Crutcher, R. M. 1999, ApJ, 520, 706, doi: 10.1086/307483
    —. 2012, ARA&A, 50, 29, doi: 10.1146/annurev-astro-081811-125514
    Crutcher, R. M., & Kemball, A. J. 2019, Frontiers in Astronomy and Space Sciences, 6,
    66, doi: 10.3389/fspas.2019.00066
    Crutcher, R. M., Nutter, D. J., Ward-Thompson, D., & Kirk, J. M. 2004, ApJ, 600, 279,
    doi: 10.1086/379705
    Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E., & Troland, T. H. 2010, ApJ,
    725, 466, doi: 10.1088/0004-637X/725/1/466
    Cui, C., & Bai, X.-N. 2021, MNRAS, 507, 1106, doi: 10.1093/mnras/stab2220
    D avis, L. 1951, Physical Review, 81, 890, doi: 10.1103/PhysRev.81.890.2
    de Gregorio-Monsalvo, I., M´enard, F., Dent,W., et al. 2013, A&A, 557, A133, doi: 10.
    1051/0004-6361/201321603
    Dunham, M. M., Arce, H. G., Allen, L. E., et al. 2013, AJ, 145, 94, doi: 10.1088/
    0004-6256/145/4/94
    Dzib, S. A., Loinard, L., Ortiz-Le´on, G. N., Rodr´ıguez, L. F., & Galli, P. A. B. 2018,
    ApJ, 867, 151, doi: 10.3847/1538-4357/aae687
    Enoch, M. L., Evans, Neal J., I., Sargent, A. I., et al. 2008, ApJ, 684, 1240, doi: 10.
    1086/589963
    Evans, Neal J., I., Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJS, 181, 321, doi: 10.
    1088/0067-0049/181/2/321
    Facchini, S., Birnstiel, T., Bruderer, S., & van Dishoeck, E. F. 2017, A&A, 605, A16,
    doi: 10.1051/0004-6361/201630329
    Frerking, M. A., Langer, W. D., & Wilson, R. W. 1982, ApJ, 262, 590, doi: 10.1086/
    160451
    Furlan, E., Fischer,W. J., Ali, B., et al. 2016, ApJS, 224, 5, doi: 10.3847/0067-0049/
    224/1/5
    Galli, P. A. B., Bouy, H., Olivares, J., et al. 2020, A&A, 643, A148, doi: 10.1051/
    0004-6361/202038717
    Gaudel, M., Maury, A. J., Belloche, A., et al. 2020, A&A, 637, A92, doi: 10.1051/
    0004-6361/201936364
    Girart, J. M., Rao, R., & Marrone, D. P. 2006, Science, 313, 812, doi: 10.1126/
    science.1129093
    Gobat, C. 2022, Asymmetric Uncertainty: Handling nonstandard numerical uncertainties,
    Astrophysics Source Code Library, record ascl:2208.005. http://ascl.net/
    2208.005
    Gray, W. J., McKee, C. F., & Klein, R. I. 2018, MNRAS, 473, 2124, doi: 10.1093/
    mnras/stx2406
    Guilloteau, S., Simon, M., Pi´etu, V., et al. 2014, A&A, 567, A117, doi: 10.1051/
    0004-6361/201423765
    Harsono, D., Bjerkeli, P., van derWiel, M. H. D., et al. 2018, Nature Astronomy, 2, 646,
    doi: 10.1038/s41550-018-0497-x
    H arsono, D., Jørgensen, J. K., van Dishoeck, E. F., et al. 2014, A&A, 562, A77, doi: 10.
    1051/0004-6361/201322646
    Harsono, D., van Dishoeck, E. F., Bruderer, S., Li, Z. Y., & Jørgensen, J. K. 2015, A&A,
    577, A22, doi: 10.1051/0004-6361/201424550
    Hartmann, L., Cassen, P., & Kenyon, S. J. 1997, ApJ, 475, 770, doi: 10.1086/303547
    Hayashi, C., & Nakano, T. 1963, Progress of Theoretical Physics, 30, 460, doi: 10.
    1143/PTP.30.460
    Heiles, C., & Crutcher, R. 2005, in Cosmic Magnetic Fields, ed. R. Wielebinski &
    R. Beck, Vol. 664, 137, doi: 10.1007/3540313966_7
    Hennebelle, P., & Ciardi, A. 2009, A&A, 506, L29, doi: 10.1051/0004-6361/
    200913008
    Hennebelle, P., Commerc¸on, B., Chabrier, G., & Marchand, P. 2016, ApJ, 830, L8,
    doi: 10.3847/2041-8205/830/1/L8
    Hennebelle, P., Commerc¸on, B., Lee, Y.-N., & Charnoz, S. 2020, A&A, 635, A67,
    doi: 10.1051/0004-6361/201936714
    Hennebelle, P., & Fromang, S. 2008, A&A, 477, 9, doi: 10.1051/0004-6361:
    20078309
    Hirano, S., Tsukamoto, Y., Basu, S., & Machida, M. N. 2020, ApJ, 898, 118, doi: 10.
    3847/1538-4357/ab9f9d
    Hsieh, C.-H., Lai, S.-P., Cheong, P.-I., et al. 2020, ApJ, 894, 23, doi: 10.3847/
    1538-4357/ab7b69
    Hull, C. L. H., Le Gouellec, V. J. M., Girart, J. M., Tobin, J. J., & Bourke, T. L. 2020,
    ApJ, 892, 152, doi: 10.3847/1538-4357/ab5809
    Hull, C. L. H., & Zhang, Q. 2019, Frontiers in Astronomy and Space Sciences, 6, 3,
    doi: 10.3389/fspas.2019.00003
    Hunter, C. 1977, ApJ, 218, 834, doi: 10.1086/155739
    Joos, M., Hennebelle, P., & Ciardi, A. 2012, A&A, 543, A128, doi: 10.1051/
    0004-6361/201118730
    Joos, M., Hennebelle, P., Ciardi, A., & Fromang, S. 2013, A&A, 554, A17, doi: 10.
    1051/0004-6361/201220649
    Jørgensen, J. K., van Dishoeck, E. F., Visser, R., et al. 2009, A&A, 507, 861, doi: 10.
    1051/0004-6361/200912325
    J ørgensen, J. K., Visser, R., Sakai, N., et al. 2013, ApJ, 779, L22, doi: 10.1088/
    2041-8205/779/2/L22
    Kristensen, L. E., van Dishoeck, E. F., Bergin, E. A., et al. 2012, A&A, 542, A8, doi: 10.
    1051/0004-6361/201118146
    Krumholz, M. R., Crutcher, R. M., & Hull, C. L. H. 2013, ApJ, 767, L11, doi: 10.
    1088/2041-8205/767/1/L11
    Kuffmeier, M., Zhao, B., & Caselli, P. 2020, A&A, 639, A86, doi: 10.1051/
    0004-6361/201937328
    Kumar, S. S. 1963a, ApJ, 137, 1121, doi: 10.1086/147589
    —. 1963b, ApJ, 137, 1126, doi: 10.1086/147590
    Lam, K. H., Li, Z.-Y., Chen, C.-Y., Tomida, K., & Zhao, B. 2019, MNRAS, 489, 5326,
    doi: 10.1093/mnras/stz2436
    Larson, R. B. 1969, MNRAS, 145, 271, doi: 10.1093/mnras/145.3.271
    Le Gouellec, V. J. M., Hull, C. L. H., Maury, A. J., et al. 2019, ApJ, 885, 106, doi: 10.
    3847/1538-4357/ab43c2
    Lee, C.-F., Hirano, N., Zhang, Q., et al. 2014, ApJ, 786, 114, doi: 10.1088/
    0004-637X/786/2/114
    Lee, C.-F., Mundy, L. G., Reipurth, B., Ostriker, E. C., & Stone, J. M. 2000, ApJ, 542,
    925, doi: 10.1086/317056
    Lee, Y.-N., Charnoz, S., & Hennebelle, P. 2021a, A&A, 648, A101, doi: 10.1051/
    0004-6361/202038105
    Lee, Y.-N., Marchand, P., Liu, Y.-H., & Hennebelle, P. 2021b, ApJ, 922, 36, doi: 10.
    3847/1538-4357/ac235d
    Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2011, ApJ, 738, 180, doi: 10.1088/
    0004-637X/738/2/180
    —. 2013, ApJ, 774, 82, doi: 10.1088/0004-637X/774/1/82
    Li, Z.-Y., Krasnopolsky, R., Shang, H., & Zhao, B. 2014, ApJ, 793, 130, doi: 10.1088/
    0004-637X/793/2/130
    Liu, J., Zhang, Q., Commerc¸on, B., et al. 2021, ApJ, 919, 79, doi: 10.3847/
    1538-4357/ac0cec
    Lodato, G., & Rice, W. K. M. 2004, MNRAS, 351, 630, doi: 10.1111/j.1365-2966.
    2004.07811.x
    —. 2005, MNRAS, 358, 1489, doi: 10.1111/j.1365-2966.2005.08875.x
    L ommen, D., Jørgensen, J. K., van Dishoeck, E. F., & Crapsi, A. 2008, A&A, 481, 141,
    doi: 10.1051/0004-6361:20077543
    Machida, M. N., Inutsuka, S.-i., & Matsumoto, T. 2010, ApJ, 724, 1006, doi: 10.1088/
    0004-637X/724/2/1006
    Machida, M. N., & Matsumoto, T. 2012, MNRAS, 421, 588, doi: 10.1111/j.
    1365-2966.2011.20336.x
    Machida, M. N., Matsumoto, T., & Inutsuka, S.-i. 2016, MNRAS, 463, 4246, doi: 10.
    1093/mnras/stw2256
    Manara, C. F., Ansdell, M., Rosotti, G. P., et al. 2022, arXiv e-prints, arXiv:2203.09930,
    doi: 10.48550/arXiv.2203.09930
    Mangum, J. G., & Shirley, Y. L. 2015, Publications of the Astronomical Society of the
    Pacific, 127, 266, doi: 10.1086/680323
    Marchand, P., Masson, J., Chabrier, G., et al. 2016, A&A, 592, A18, doi: 10.1051/
    0004-6361/201526780
    Maret, S., Maury, A. J., Belloche, A., et al. 2020, A&A, 635, A15, doi: 10.1051/
    0004-6361/201936798
    Masson, J., Chabrier, G., Hennebelle, P., Vaytet, N., & Commerc¸on, B. 2016, A&A,
    587, A32, doi: 10.1051/0004-6361/201526371
    McElroy, D., Walsh, C., Markwick, A. J., et al. 2013, A&A, 550, A36, doi: 10.1051/
    0004-6361/201220465
    McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007a, in Astronomical
    Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis
    Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127
    McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007b, in Astronomical
    Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis
    Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127
    Mellon, R. R., & Li, Z.-Y. 2008a, ApJ, 681, 1356, doi: 10.1086/587542
    —. 2008b, ApJ, 681, 1356, doi: 10.1086/587542
    Mendoza, S., Tejeda, E., & Nagel, E. 2009, MNRAS, 393, 579, doi: 10.1111/j.1365-2966.2008.14210.x
    Mestel, L. 1966, MNRAS, 133, 265, doi: 10.1093/mnras/133.2.265
    Mestel, L., & Spitzer, L., J. 1956, MNRAS, 116, 503, doi: 10.1093/mnras/116.5.503
    M otte, F., & Andre´, P. 2001, A&A, 365, 440, doi: 10.1051/0004-6361:20000072
    Mouschovias, T. C., & Ciolek, G. E. 1999, in NATO Advanced Study Institute (ASI)
    Series C, Vol. 540, The Origin of Stars and Planetary Systems, ed. C. J. Lada & N. D. Kylafis, 305
    Murillo, N. M., Harsono, D., McClure, M., Lai, S. P., & Hogerheijde, M. R. 2018, A&A,
    615, L14, doi: 10.1051/0004-6361/201833420
    Murillo, N. M., Lai, S.-P., Bruderer, S., Harsono, D., & van Dishoeck, E. F. 2013, A&A,
    560, A103, doi: 10.1051/0004-6361/201322537
    Öberg, K. I., Guzma´n, V. V., Walsh, C., et al. 2021, ApJS, 257, 1, doi: 10.3847/
    1538-4365/ac1432
    Offner, S. S. R., & Chaban, J. 2017, ApJ, 847, 104, doi: 10.3847/1538-4357/aa8996
    Ohashi, N., Hayashi, M., Ho, P. T. P., & Momose, M. 1997, ApJ, 475, 211, doi: 10.1086/303533
    Ohashi, N., Jørgensen, J. K., Tobin, J. J., Takakuwa, S., & Sheehan, Patrick. accepted, ApJ
    Ohashi, N., Saigo, K., Aso, Y., et al. 2014, ApJ, 796, 131, doi: 10.1088/0004-637X/796/2/131
    Okoda, Y., Oya, Y., Sakai, N., et al. 2018, ApJ, 864, L25, doi: 10.3847/2041-8213/aad8ba
    Okoda, Y., Oya, Y., Francis, L., et al. 2021, ApJ, 910, 11, doi: 10.3847/1538-4357/abddb1
    Ossenkopf, V., & Henning, T. 1994, A&A, 291, 943
    Oya, Y., Sakai, N., Sakai, T., et al. 2014, ApJ, 795, 152, doi: 10.1088/0004-637X/795/2/152
    Pani´c, O., Hogerheijde, M. R., Wilner, D., & Qi, C. 2009, A&A, 501, 269, doi: 10.1051/0004-6361/200911883
    Pattle, K., Fissel, L., Tahani, M., Liu, T., & Ntormousi, E. 2022, arXiv e-prints,
    arXiv:2203.11179. https://arxiv.org/abs/2203.11179
    Pineda, J. E., Segura-Cox, D., Caselli, P., et al. 2020, Nature Astronomy, doi: 10.1038/s41550-020-1150-z
    Pineda, J. E., Zhao, B., Schmiedeke, A., et al. 2019, ApJ, 882, 103, doi: 10.3847/1538-4357/ab2cd1
    R edaelli, E., Alves, F. O., Santos, F. P., & Caselli, P. 2019, A&A, 631, A154, doi: 10.1051/0004-6361/201936271
    Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K., & Denzmore, P. 2006, ApJS, 167, 256, doi: 10.1086/508424
    Rosolowsky, E. W., Pineda, J. E., Kauffmann, J., & Goodman, A. A. 2008, ApJ, 679, 1338, doi: 10.1086/587685
    Sai, J., Ohashi, N., Saigo, K., et al. 2020, ApJ, 893, 51, doi: 10.3847/1538-4357/ab8065
    Sakai, N., & Yamamoto, S. 2013, Chemical Reviews, 113, 8981, doi: 10.1021/cr4001308
    Sakai, N., Sakai, T., Hirota, T., et al. 2014, Nature, 507, 78, doi: 10.1038/nature13000
    Sakai, N., Oya, Y., Higuchi, A. E., et al. 2017, MNRAS, 467, L76, doi: 10.1093/mnrasl/slx002
    Santamar´ıa-Miranda, A., de Gregorio-Monsalvo, I., Plunkett, A. L., et al. 2021, A&A, 646, A10, doi: 10.1051/0004-6361/202039419
    Sargent, A. I., & Beckwith, S. 1987, ApJ, 323, 294, doi: 10.1086/165827
    Segura-Cox, D. M., Looney, L. W., Tobin, J. J., et al. 2018, ApJ, 866, 161, doi: 10.3847/1538-4357/aaddf3
    Segura-Cox, D. M., Schmiedeke, A., Pineda, J. E., et al. 2020, Nature, 586, 228, doi: 10.1038/s41586-020-2779-6
    Seifried, D., Banerjee, R., Pudritz, R. E., & Klessen, R. S. 2013, MNRAS, 432, 3320,
    doi: 10.1093/mnras/stt682
    —. 2015, MNRAS, 446, 2776, doi: 10.1093/mnras/stu2282
    Sheehan, P. D., & Eisner, J. A. 2018, ApJ, 857, 18, doi: 10.3847/1538-4357/aaae65
    Sheehan, P. D., Tobin, J. J., Federman, S., Megeath, S. T., & Looney, L. W. 2020, ApJ, 902, 141, doi: 10.3847/1538-4357/abbad5
    Sheehan, P. D., Tobin, J. J., Looney, L. W., & Megeath, S. T. 2022, ApJ, 929, 76,
    doi: 10.3847/1538-4357/ac574d
    Sheehan, P. D., Wu, Y.-L., Eisner, J. A., & Tobin, J. J. 2019, ApJ, 874, 136, doi: 10.3847/1538-4357/ab09f9
    Shu, F. H. 1977, ApJ, 214, 488, doi: 10.1086/155274
    Simon, M., Dutrey, A., & Guilloteau, S. 2000, ApJ, 545, 1034, doi: 10.1086/317838
    S tahler, S. W., Shu, F. H., & Taam, R. E. 1980, ApJ, 241, 637, doi: 10.1086/158377
    Starling, R. L. C., van der Horst, A. J., Rol, E., et al. 2008, ApJ, 672, 433, doi: 10.1086/521975
    Tachihara, K., Rengel, M., Nakajima, Y., et al. 2007, ApJ, 659, 1382, doi: 10.1086/512093
    Takahashi, S. Z., Tomida, K., Machida, M. N., & Inutsuka, S.-i. 2016, MNRAS, 463,
    1390, doi: 10.1093/mnras/stw1994
    Teague, R. 2019, Research Notes of the American Astronomical Society, 3, 74, doi: 10.
    3847/2515-5172/ab2125
    Teague, R., & Foreman-Mackey, D. 2018, Research Notes of the American Astronomical
    Society, 2, 173, doi: 10.3847/2515-5172/aae265
    Terebey, S., Shu, F. H., & Cassen, P. 1984, ApJ, 286, 529, doi: 10.1086/162628
    Tobin, J. J., Hartmann, L., Bergin, E., et al. 2012a, ApJ, 748, 16, doi: 10.1088/
    0004-637X/748/1/16
    Tobin, J. J., Hartmann, L., Chiang, H.-F., et al. 2012b, Nature, 492, 83, doi: 10.1038/
    nature11610
    Tobin, J. J., Looney, L. W., Wilner, D. J., et al. 2015, ApJ, 805, 125, doi: 10.1088/
    0004-637X/805/2/125
    Tobin, J. J., Megeath, S. T., van’t Hoff, M., et al. 2019, ApJ, 886, 6, doi: 10.3847/
    1538-4357/ab498f
    Tobin, J. J., Sheehan, P. D., Megeath, S. T., et al. 2020a, ApJ, 890, 130, doi: 10.3847/
    1538-4357/ab6f64
    Tobin, J. J., Sheehan, P. D., Reynolds, N., et al. 2020b, ApJ, 905, 162, doi: 10.3847/
    1538-4357/abc5bf
    Tomida, K., Okuzumi, S., & Machida, M. N. 2015, ApJ, 801, 117, doi: 10.1088/
    0004-637X/801/2/117
    Trapman, L., Ansdell, M., Hogerheijde, M. R., et al. 2020, A&A, 638, A38, doi: 10.
    1051/0004-6361/201834537
    Troland, T. H., & Crutcher, R. M. 2008, ApJ, 680, 457, doi: 10.1086/587546
    Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M. N., & Inutsuka, S. 2015, MNRAS,
    452, 278, doi: 10.1093/mnras/stv1290
    Tsukamoto, Y., Okuzumi, S., Iwasaki, K., Machida, M. N., & Inutsuka, S. 2018, ApJ,
    868, 22, doi: 10.3847/1538-4357/aae4dc
    T sukamoto, Y., Maury, A., Commerc¸on, B., et al. 2022, arXiv e-prints,
    arXiv:2209.13765, doi: 10.48550/arXiv.2209.13765
    Tychoniec, Ł., Manara, C. F., Rosotti, G. P., et al. 2020, A&A, 640, A19, doi: 10.1051/
    0004-6361/202037851
    Ulrich, R. K. 1976, ApJ, 210, 377, doi: 10.1086/154840
    van Gelder, M. L., Tabone, B., van Dishoeck, E. F., & Godard, B. 2021, A&A, 653,
    A159, doi: 10.1051/0004-6361/202141591
    Vazzano, M. M., Fern´andez-L´opez, M., Plunkett, A., et al. 2021, A&A, 648, A41,
    doi: 10.1051/0004-6361/202039228
    Wang, W., V¨ais¨al¨a, M. S., Shang, H., et al. 2022, ApJ, 928, 85, doi: 10.3847/
    1538-4357/ac4d2e
    Ward-Thompson, D., Andr´e, P., Crutcher, R., et al. 2007, in Protostars and Planets V, ed.
    B. Reipurth, D. Jewitt, & K. Keil, 33, doi: 10.48550/arXiv.astro-ph/0603474
    Ward-Thompson, D., Buckley, H. D., Greaves, J. S., Holland, W. S., & Andr´e, P. 1996,
    MNRAS, 281, L53, doi: 10.1093/mnras/281.3.L53
    Weintraub, D. A., Masson, C. R., & Zuckerman, B. 1987, ApJ, 320, 336, doi: 10.1086/
    165547
    —. 1989, ApJ, 344, 915, doi: 10.1086/167859
    Williams, J. P., & Cieza, L. A. 2011, ARA&A, 49, 67, doi: 10.1146/
    annurev-astro-081710-102548
    Wurster, J. 2016, PASA, 33, e041, doi: 10.1017/pasa.2016.34
    —. 2021, MNRAS, 501, 5873, doi: 10.1093/mnras/staa3943
    Wurster, J., Bate, M. R., & Bonnell, I. A. 2021, MNRAS, 507, 2354, doi: 10.1093/
    mnras/stab2296
    Wurster, J., Bate, M. R., & Price, D. J. 2018a, MNRAS, 476, 2063, doi: 10.1093/
    mnras/sty392
    —. 2018b, MNRAS, 475, 1859, doi: 10.1093/mnras/stx3339
    —. 2019, MNRAS, 489, 1719, doi: 10.1093/mnras/stz2215
    Wurster, J., & Lewis, B. T. 2020, MNRAS, 495, 3795, doi: 10.1093/mnras/staa1339
    Wurster, J., & Li, Z.-Y. 2018, Frontiers in Astronomy and Space Sciences, 5, 39,
    doi: 10.3389/fspas.2018.00039
    Wurster, J., Price, D. J., & Bate, M. R. 2016, MNRAS, 457, 1037, doi: 10.1093/
    mnras/stw013
    Y en, H.-W., Gu, P.-G., Hirano, N., et al. 2019, ApJ, 880, 69, doi: 10.3847/1538-4357/
    ab29f8
    Yen, H.-W., Koch, P. M., Takakuwa, S., et al. 2015a, ApJ, 799, 193, doi: 10.1088/
    0004-637X/799/2/193
    —. 2017a, ApJ, 834, 178, doi: 10.3847/1538-4357/834/2/178
    Yen, H.-W., Takakuwa, S., Koch, P. M., et al. 2015b, ApJ, 812, 129, doi: 10.1088/
    0004-637X/812/2/129
    Yen, H.-W., Takakuwa, S., & Ohashi, N. 2011, ApJ, 742, 57, doi: 10.1088/
    0004-637X/742/1/57
    Yen, H.-W., Zhao, B., Koch, P. M., & Gupta, A. 2021, ApJ, 916, 97, doi: 10.3847/
    1538-4357/ac0723
    Yen, H.-W., Zhao, B., Koch, P. M., et al. 2018, A&A, 615, A58, doi: 10.1051/
    0004-6361/201732195
    Yen, H.-W., Takakuwa, S., Ohashi, N., et al. 2014, ApJ, 793, 1, doi: 10.1088/
    0004-637X/793/1/1
    Yen, H.-W., Takakuwa, S., Chu, Y.-H., et al. 2017b, A&A, 608, A134, doi: 10.1051/
    0004-6361/201730894
    Yen, H.-W., Koch, P. M., Lee, C.-F., et al. 2023, ApJ, 942, 32, doi: 10.3847/
    1538-4357/aca47f
    Zhao, B., Caselli, P., & Li, Z.-Y. 2018, MNRAS, 478, 2723, doi: 10.1093/mnras/
    sty1165
    Zhao, B., Caselli, P., Li, Z.-Y., et al. 2016, MNRAS, 460, 2050, doi: 10.1093/mnras/
    stw1124
    Zhao, B., Tomida, K., Hennebelle, P., et al. 2020, Space Sci. Rev., 216, 43, doi: 10.
    1007/s11214-020-00664-z
    Zhou, S., Evans, Neal J., I., Koempe, C., & Walmsley, C. M. 1993, ApJ, 404, 232,
    doi: 10.1086/172271
    Zucker, C., Speagle, J. S., Schlafly, E. F., et al. 2020, A&A, 633, A51, doi: 10.1051/
    0004-6361/201936145

    QR CODE