簡易檢索 / 詳目顯示

研究生: 魏福村
Wei, Fu-Tsun
論文名稱: On Arithmetic of Curves over Function Fields
指導教授: 蔡孟傑
Meng Kiat Chuah
于靖
Yu, Jing
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 114
中文關鍵詞: 函數體四元數代數自守型橢圓曲線
外文關鍵詞: function field, quaternion algebra, automorphic form, elliptic curves
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • There are two parts in the thesis.
    Part One (Chapter 1 to 4) is on arithmetic of definite Shimura curves over function fields and automorphic forms.
    We construct certain theta series from definite quaternion algebras over function fields which generate
    the space of harmonic automorphic forms.
    From the special points on definite Shimura curves and those theta series
    we deduce the critical central value of $L$-series of automoprhic forms.
    As applications, an analogue of Waldspurger's formula and
    critical central values of Hasse-Weil $L$-function of certain elliptic curves over function fields are obtained.

    Part Two (Chapter 5) is a published paper: On the independence of Heegner points over function fields.
    We prove the independence of Heegner points for different "imaginary" quadratic function fields
    and get a subgroup of elliptic curves with arbitrary large rank.


    Acknowledgements Introduction Part 1. Definite Shimura Curves Chapter I. Preliminaries 1. Drinfeld modules and isogenies 2. Finite Drinfeld modules 2.1 Supersingular Drinfeld modules 2.2 Mass formula Chapter II Brandt Matrices and Definite Shimura Curves 1. Brandt matrices 1.1 Trace formula 1.2 Supersingular Drinfeld modules and Brandt matrices 1.3 Recurrence relations of Brnadt matrices 1.4 Theta series 2. Definite Shimura curves 3. Actions on Gross points 4. Hecke correspondence and Gross height pairing Chapter III Automorphic Forms of Drinfeld Type and L-Series 1. Automorphic forms of Drinfeld type and main theorem 1.1 Automorphic forms of Drinfeld type 1.2 Hecke operators 1.3 Main theorem 2. J-L correspondence and the multiplicity one theorem 2.1 Jacquet-Langlands correspondence 2.2 Multiplicity one theorem 3. Special values of L-series 3.1 Rankin's method 3.2 The heights of special points 3.3 The special value \Lambda(f, \chi,0) Chapter IV. Integral Weight and Half Integral Weight 1. Integral weight 1.1 Operator T_{\infty, \kappa} 1.2 Automorphic forms of weight 2 2. Half integral weight 2.1 Theta series 2.2 Extension G of GL_2(k_{\infty}) by S^1 2.3 Half integral weight and operators T_{\infty, kappa/2} 2.4 Hecke operators 2.5 A three squares problem 2.6 An analogue of Waldspurger's formula Part 2. Elliptic Curves and Heegner Points Chapter V. On the independence of Heegner points over function fields 1. Drinfeld modular curves 1.1 Analytic theory of Drinfeld modules 1.2 Moduli spaces and Drinfeld modular curves 1.3 CM-points associated to O_K 2. Independence of Heegner points 2.1 Independence property 2.2 Proof of Claim I 2.3 Proof of Claim II 3. Existence of Large Prime-to-2p Part of Class Number 3.1 Odd characteristic cases 3.2 Even characteristic cases 3.3 Asymptotic behavior Bibliography Symbols in Part I

    E. Artin, Quadratische Korper der komplexen Multiplikation, Enzyklopadie der Math. Wiss. Band I, 2. Teil, Heft 10, Teil II.

    M. Bertolini and H. Darmon, Heegner points on Mumford-Tate curves, Inv. Math., 126 (1996) 413-456.

    D. Bump, Automorphic Forms and representations, Cambridge studies in advanced mathematics 55, (1996).

    F. Breuer, Higher Heegner points on elliptic curves over function fields. Journal of Number Theory, 104 (2004), 315-326.

    D. A. Cardon and M. R. Murty, Exponents of Class Groups of Quadratic Function Fields over Finite Fields. Canad. Math. Bull. Vol. 44 (4), 2001 398-407.

    W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201, (1973) 301-314.

    P. Deligne and D. Husemoller, Survey of Drinfeld modules, Contemp. Math. 67, (1987) 25-91.

    V. G. Drinfeld, Elliptic modules. (Russian) Mat. Sb. (N.S.) 94(136) (1974), 594--627, 656.

    M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren, Crelle J. 195 (1955), 127-151.

    M. Eichler, Lectures on Modular Correspondences, Tata Institute of Fundamental Research, Bombay 1957.

    E.-U. Gekeler, Uber Drinfeld'sche Modulkurven vom
    Hecke-Typ, Comp. Math. 57 (1986) 219-236.

    E.-U. Gekeler, On finite Drinfeld Modules, J. Algebra 141 (1991) 187-203.

    E.-U. Gekeler, On the arithmetic of some division algebras, Comment. Math. Helvetici 67 (1992) 316-333.

    E.-U. Gekeler, Invariants of Some Algebraic Curves
    Related to Drinfeld Modular Curves, J. Number Theory 90 (2001) 166-183.

    E.-U. Gekeler and M. Reversat, Jacobians of Drinfeld modular curves, J. reine angew. Math. 476 (1996), 27-93.

    S. S. Gelbart, Automorphic forms on adele groups, Princeton University Press, Princeton, (1975).

    S. S. Gelbart, Weil's representation and the spectrum of the metaplectic group, LNM 530, Springer 1976.

    B. H. Gross, Heights and the Special Values of $L$-series, CMS Conference Proceedings, H. Kisilevsky, J. Labute, Eds.,
    7 (1987) 116-187.

    S. D. Gupta, Mean values of $L$-functions over function fields,J. Number Theory 63 (1997) 101-131.

    B. H. Gross and D. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), 225-320.

    J. Hoffstein and M. Rosen, Average values of $L$-series in function fields, J. reine angew. Math. 426 (1992), 117-150.

    D. R. Hayes, Explicit class field theory in global function fields.Studies in algebra and number theory, pp. 173--217,
    Adv. in Math. Suppl. Stud., 6, Academic Press, New York-London, 1979.

    D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields (eds. D. Goss et al), de Gruyter, New York-Berlin, 1992.

    J.-I. Igusa, Fibre Systems of Jacobian Varieties:(III. Fibre systems of elliptic curves), American Journal of Mathematics, Vol. 81, No. 2. (Apr., 1959), 453-476.

    H. Jacquet and R. Langlands, Automorphic Forms on GL(2), LNM 114, Springer 1970.

    M. L. Madan and D. J. Madden, On the Theory of Congruence Function Fields, Communications in Algebra, 8(17), 1687-1697 (1980).

    D. A. Kazhdan and S. J. Patterson, Metaplectic forms, Publications mathematiques de l'I.H.E.S., tome 59 (1984), p. 35-142.

    T. Kubota, Topological covering of SL(2) over a local field, J. Math. Soc. of Japan, 19, No. 1 (1967), 114-121.

    T. Kubota, On automorphic functions and the reciprocity law in a number field, Lectures in Math. 21, Kyoto University 1969.

    T. Kubota, Some results concerning the reciprocity law and real analytic automorphic functions, Proc. of Symp. in Pure Math. XX, Amer. Math. Soc., 1971.

    A. Pizer, An algorithm for computing modular forms on
    Gamma_0(N), J. Algebra 64 (1980), 340-390.

    M. van der Put and J. Top, Analytic compactification and modular forms, Drinfeld modules, modular schemes and applications (Alden-Biesen, 1996), 113-140, World Sci. Publ., River Edge, NJ, 1997.

    M. Rosen, Number Theory in Function Fields,GTM 210, Springer 2001.

    M. Rosen and J. H. Silverman, On the independence of Heegner points associated to distinct quadratic imaginary fields, Journal of Number Theory, 127(2007), 10-36.

    & H.-G. Ruck, Theta Series of Imaginary Quadratic Function Fields, manuscripta math. 88 (1995), 387-407.

    H.-G. Ruck and U. Tipp, Heegner Points and L-series of Automorphic Cusp Forms of Drinfeld Type, Documenta Mathematica 5 (2000) 365-444.

    A. Schweizer, On the Drinfeld Modular Polynomial Phi_T(X,Y), J. Number Theory 52 (1995) 53-68.

    J.-P. Serre, Tree, Springer, Berlin-Heidelberg-New York 1980.

    G. Shimura, On modular forms of half integral weight, Ann. Math. Vol. 97, No. 3 (1973) 440-481.

    K. Soundararajan, The Number of Imaginary Quadratic Fields with a Given Class Number, Hardy-Ramanujan J. 30 (2007), 13-18.

    K.-S. Tan and D. Rockmore, Computation of L-series for elliptic curves over function fields, J. Reine Angew. Math. 424 (1992), 107-135.

    J. T. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Seminaire Bourbaki, Exp. No. 306, Vol. 9, Soc. Math. France, Paris, 1995, 415-440.

    D. Ulmer, Elliptic curves and analogies between number fields and function fields. Heegner points and Rankin L-series, 285-315, Math. Sci. Res. Inst. Publ., 49, Cambridge Univ. Press, Cambridge, 2004.

    M.-F. Vigneras, Arithmetique des Algebres de Quaternions, LNM 800, Springer 1980.

    Julie T.-Y. Wang and J. Yu, On class number relations over function fields, J. Number Theory 69 (1998), 181-196.

    F.-T. Wei and J. Yu, On the Independence of Heegner points in the function field case, in J. Number Theory 130 (2010), 2542-2560.

    A. Weil, Dirichlet Series and Automorphic Forms, LNM 189, Springer 1971.

    C.-F. Yu and J. Yu, Mass formula of supersingular Drinfeld modules, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 905-908.

    J.-K. Yu, A class number relation over function fields, J. Number Theory 54 (1995), 318-340.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE