研究生: |
陳貝瑜 Chen, Pei-Yu. |
---|---|
論文名稱: |
PD-L1之基因及表觀基因調控於幹細胞分化與肺癌細胞進程之研究 Genetic and Epigenetic Regulation of PD-L1 in Stem Cell Differentiation and Lung Cancer Cell Progression |
指導教授: |
周裕珽
Chou, Yu-Ting |
口試委員: |
蕭世欣
Hsiao, Shih-Hsin 林賜恩 Lin, Sey-En |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 表觀遺傳調控 、細胞分化 、肺癌細胞異質性 、肺癌進程 |
外文關鍵詞: | PDL1, epigenetic regulation, stem cell differentiation, lung cancer cell heterogeneity, TGFBI, lung cancer progression |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
儘管PD-L1在免疫療法中已被當成生物指標與治療標的,該基因在細胞分化及癌症中受表觀基因及基因調控尚不明確。在這份研究中,我們發現在幹細胞分化及重編程(reprogramming)中,PD-L1會被表觀基因的H3K27乙醯化(H3K27 acetylation, H3K27ac)調控其表現量。此外,H3K27ac亦影響了PD-L1在肺癌細胞中的表現量異質性。臨床資料揭示大多數肺癌腫瘤有PD-L1的拷貝數變異刪除(copy number variation deletion),且從肺癌細胞中剔除PD-L1表現的實驗結果暗示了PD-L1在肺癌中扮演抑制癌細胞生長的角色。藉由分析PD-L1剔除後的其餘基因表現量,我們發現TGFBI為PD-L1的下游標的,並和PD-L1一同調控肺癌細胞的生長。更甚者,我們發現PD-L1-TGFBI信號會受TGF-β刺激而影響CITED2-p21CIP對細胞生長的調控。綜觀而言,我們的研究確立了PD-L1會因表觀基因及基因調控而影響正常細胞的分化、腫瘤細胞異質性,及癌細胞進程。
PD-L1 has become a biomarker and therapeutic target in immunotherapy. However, how PD-L1 is regulated by genetic and epigenetic factors to affect cellular differentiation and cancer cell progression is unclear. In this study, we revealed that PD-L1 expression is under H3K27ac epigenetic regulation during stem cell differentiation and reprogramming. We observed that lung cancer cells display heterogeneous PD-L1 expression, which is associated with H3K27ac modification. We discovered that lung tumors harbored PD-L1 deletion, and silencing PD-L1 in lung cancer cells promoted cellular proliferation, suggesting an inhibitory role of PD-L1 in lung cancer growth. Through gene profiling analysis, we identified TGFBI as a downstream target of PD-L1, knockdown of which promoted lung cancer cell growth. We observed that PDL-TGFBI signaling is induced by TGF-β stimulation to affect CITED2-p21CIP mediated cell growth control. Together, our findings support that PD-L1 is under genetic and epigenetic controls to patriciate in normal cell differentiation, tumor cell heterogeneity, and cancer cell progression.
1. L. SR, D. MK, Ahmedin J. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians 2018;68:7-30
2. Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y. The new World Health Organization classification of lung tumours. European Respiratory Journal 2001;18:1059-68
3. Sociey AC. Cancer Facts & Figures 2017. Atlanta: American Cancer Society 2017.
4. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer 2012;12:252
5. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubat T, Yagita H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. International Immunology 1996;8:765-72
6. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Medicine 2002;8:793
7. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the Pd-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. The Journal of Experimental Medicine 2000;192:1027-34
8. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer. New England Journal of Medicine 2012;366:2455-65
9. Pavel K, Pavel O, Lucie L, Pavel K. Immunotherapy Approaches in Cancer Treatment. Current Pharmaceutical Biotechnology 2015;16:771-81
10. Raez LE, Fein S, Podack ER. Lung Cancer Immunotherapy. Clinical Medicine & Research 2005;3:221-8
11. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nature Medicine 2006;13:84
12. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. New England Journal of Medicine 2016;375:819-29
13. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. Primary Resistance to PD-1 Blockade Mediated by <em>JAK1/2</em> Mutations. Cancer Discovery 2017;7:188-201
14. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discovery 2016;6:202-16
15. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. British Journal Of Cancer 2018;118:9
16. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M. B7-H1 Expression on Non-Small Cell Lung Cancer Cells and Its Relationship with Tumor-Infiltrating Lymphocytes and Their PD-1 Expression. Clinical Cancer Research 2004;10:5094-100
17. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al. Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. OncoImmunology 2015;4:e1008824
18. Lastwika KJ, Wilson W, Li QK, Norris J, Xu H, Ghazarian SR, et al. Control of PD-L1 Expression by Oncogenic Activation of the AKT–mTOR Pathway in Non–Small Cell Lung Cancer. Cancer Research 2016;76:227-38
19. Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, et al. Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. Journal of Thoracic Oncology 2015;10:910-23
20. Gato-Cañas M, Zuazo M, Arasanz H, Ibañez-Vea M, Lorenzo L, Fernandez-Hinojal G, et al. PD-L1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity. Cell Reports 2017;20:1818-29
21. Jason M, E. VR, M. MA, Hojabr K, S. WJ, Jessica H, et al. PD‐L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti‐PD‐1/PD‐L1 clinical trials. Pigment Cell & Melanoma Research 2015;28:245-53
22. Lin S-C, Chou Y-T, Jiang SS, Chang J-L, Chung C-H, Kao Y-R, et al. Epigenetic Switch between <em>SOX2</em> and <em>SOX9</em> Regulates Cancer Cell Plasticity. Cancer Research 2016;76:7036-48
23. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong K-K. Non-small-cell lung cancers: a heterogeneous set of diseases. Nature Reviews Cancer 2014;14:535
24. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004;429:457
25. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nature Reviews Genetics 2001;2:21
26. V. PP, J. PM, Flavia C, Maria V, Paola U, B. BC, et al. Role of histone acetylation and DNA methylation in the maintenance of the imprinted expression of the H19 and Igf2 genes. FEBS Letters 1999;458:45-50
27. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences 2010;107:21931-6
28. Roth SY, Denu JM, Allis CD. Histone Acetyltransferases. Annual Review of Biochemistry 2001;70:81-120
29. Bogdanović O, Fernandez-Miñán A, Tena JJ, de la Calle-Mustienes E, Hidalgo C, van Kruysbergen I, et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Research 2012;22:2043-53
30. Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, et al. Combination Epigenetic Therapy Has Efficacy in Patients with Refractory Advanced Non–Small Cell Lung Cancer. Cancer Discovery 2011;1:598-607
31. Shi Y, Massagué J. Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell 2003;113:685-700
32. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Reviews Cancer 2003;3:807
33. Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA. Immunohistochemical Staining for Transforming Growth Factor β1 Associates with Disease Progression in Human Breast Cancer. Cancer Research 1992;52:6949-52
34. Yukihiro H, Shingo T, Yutaka K, Takao T, Tadashi I, Ken O. Transforming growth factor‐β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 2001;91:964-71
35. Li MO, Wan YY, Sanjabi S, Robertson A-KL, Flavell RA. TRANSFORMING GROWTH FACTOR-β REGULATION OF IMMUNE RESPONSES. Annual Review of Immunology 2006;24:99-146
36. Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF. cDNA Cloning and Sequence Analysis of βig-h3, a Novel Gene Induced in a Human Adenocarcinoma Cell Line after Treatment with Transforming Growth Factor-β. DNA and Cell Biology 1992;11:511-22
37. Kim J-E, Kim S-J, Lee B-H, Park R-W, Kim K-S, Kim I-S. Identification of Motifs for Cell Adhesion within the Repeated Domains of Transforming Growth Factor-β-induced Gene,βig-h3. Journal of Biological Chemistry 2000;275:30907-15
38. Schneider D, Kleeff J, Berberat PO, Zhu Z, Korc M, Friess H, et al. Induction and expression of βig-h3 in pancreatic cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2002;1588:1-6
39. Yamanaka M, Kimura F, Kagata Y, Kondoh N, Asano T, Yamamoto M, et al. BIGH3 is overexpressed in clear cell renal cell carcinoma. Oncol Rep 2008;19:865-74
40. Lin B, Madan A, Yoon J-G, Fang X, Yan X, Kim T-K, et al. Massively Parallel Signature Sequencing and Bioinformatics Analysis Identifies Up-Regulation of TGFBI and SOX4 in Human Glioblastoma. PLOS ONE 2010;5:e10210
41. Ma C, Rong Y, Radiloff DR, Datto MB, Centeno B, Bao S, et al. Extracellular matrix protein βig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes & Development 2008;22:308-21
42. P. WM, A. LN, Peter H, J. RR, Carmela R, K. OM. Transforming growth factor‐beta‐induced protein secreted by peritoneal cells increases the metastatic potential of ovarian cancer cells. International Journal of Cancer 2011;128:1570-84
43. Lauden L, Siewiera J, Boukouaci W, Ramgolam K, Mourah S, Lebbe C, et al. TGF-β-Induced (TGFBI) Protein in Melanoma: A Signature of High Metastatic Potential. Journal of Investigative Dermatology 2014;134:1675-85
44. Li B, Wen G, Zhao Y, Tong J, Hei TK. The role of TGFBI in mesothelioma and breast cancer: association with tumor suppression. BMC Cancer 2012;12:239
45. Zhao YL, Piao CQ, Hei TK. Downregulation of Betaig-h3 gene is causally linked to tumorigenic phenotype in asbestos treated immortalized human bronchial epithelial cells. Oncogene 2002;21:7471
46. Zhao YL, Piao CQ, Hei TK. Tumor suppressor function of Betaig-H3 gene in radiation carcinogenesis. Advances in Space Research 2003;31:1575-82
47. Yongliang Z, Mona EG, K. HT. Loss of Betaig‐h3 protein is frequent in primary lung carcinoma and related to tumorigenic phenotype in lung cancer cells. Molecular Carcinogenesis 2006;45:84-92
48. Shioda T, Fenner MH, Isselbacher KJ. MSG1 and its related protein MRG1 share a transcription activating domain. Gene 1997;204:235-41
49. Dunwoodie SL, Rodriguez TA, Beddington RSP. Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis. Mechanisms of Development 1998;72:27-40
50. Sun HB, Zhu YX, Yin T, Sledge G, Yang Y-C. MRG1, the product of a melanocyte-specific gene related gene, is a cytokine-inducible transcription factor with transformation activity. Proceedings of the National Academy of Sciences 1998;95:13555-60
51. Chou YT, Hsieh CH, Chiou SH, Hsu CF, Kao YR, Lee CC, et al. CITED2 functions as a molecular switch of cytokine-induced proliferation and quiescence. Cell Death And Differentiation 2012;19:2015
52. Wade Harper J, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993;75:805-16
53. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science 2015;347
54. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science 2017;357
55. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discovery 2012;2:401-4
56. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Science Signaling 2013;6:pl1-pl
57. Wu H, Sun YE. Epigenetic Regulation of Stem Cell Differentiation. Pediatric Research 2006;59:21R
58. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006;126:663-76
59. Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R. Sox2 is important for two crucial processes in lung development: Branching morphogenesis and epithelial cell differentiation. Developmental Biology 2008;317:296-309
60. Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proceedings of the National Academy of Sciences 2008;105:20852-7
61. Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nature Reviews Cancer 2013;13:788
62. Wrzesinski SH, Wan YY, Flavell RA. Transforming Growth Factor-β and the Immune Response: Implications for Anticancer Therapy. Clinical Cancer Research 2007;13:5262-70
63. David JM, Dominguez C, McCampbell KK, Gulley JL, Schlom J, Palena C. A novel bifunctional anti-PD-L1/TGF-β Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. OncoImmunology 2017;6:e1349589