簡易檢索 / 詳目顯示

研究生: 陳信安
Chen, Sin-An
論文名稱: 金(鍚)-氧化鍚殼核狀奈米線:高溫奈米溫度計
Au(Sn)-SnO2 core-shell nanowires : high temperature nanothermometers
指導教授: 周立人
Chou, Li-Jen
陳力俊
Chen, Lih-Juann
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 72
中文關鍵詞: 氧化鍚奈米溫度計核殼狀
外文關鍵詞: tin oxide, nanothermometer, core-shell
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用鍚粉末作為鍚蒸氣的來源和散布在有350 nm厚氧化矽的矽基板上的250 nm奈米金粒子在高溫下反應,一步驟合成金-氧化鍚核殼奈米線。所得合成產物藉由X-ray繞射儀和具有能量散佈分析儀之穿透式電子鑑定其晶體結構、微結構及化學成分。為了研究其熱膨脹性為,使用臨場穿透式電子顯微鏡。初步發現,在250-750℃下,金(鍚)具有1.02×10-4 (1/K)的熱膨脹係數,而氧化鍚具有5.9×10-6 (1/K)的熱膨脹係數。因此,金(鍚)-氧化鍚核殼奈米線適合作為高溫奈米溫度計。另一方面,藉由金(鍚)之固液轉換溫度與金-鍚二元相圖可初步預測金(鍚)可能之組成,而後由高分辨電子顯微鏡鑑定其組成,最終建立一可能金(鍚)-氧化鍚核殼奈米線之可能成長模型。


    In this study, a one-step approach is utilized to fabricate Au-SnO2 core-shell nanowires. 250 nm Au nanoparticles were dispersed on a Si substrate with 350 nm silica capping layer, Sn vapor was provided by Sn powders at elevated temperature. The crystal structure, microstructure, and the chemical composition of the as-grown products were examined by X-ray diffractometer (XRD), and field emission transmission electron microscopy (FETEM) attached with an energy dispersive spectrometer (EDS). To investigate the thermal behaviors of Au(Sn)-SnO2 core-shell nanowires, an in-situ TEM was used to observe the sequential reactions during the process of the nanowires. The Au(Sn) core has a thermal expansion coefficient of 1.02×10-4 (1/K), and the coefficient of thermal expansion of SnO2 shell is 5.9×10-6 (1/K) in the temperature region of 250-750℃. Hence, Au(Sn)-SnO2 core-shell nanowires can be good candidate of high temperature nanothermometers. On the other hand, a possible growth model of Au(Sn)-SnO2 core-shell nanowires can be proposed through the solid-liquid transition temperature of the Au(Sn) core and the Au-Sn binary phase diagram. The Au(Sn) core melted at the temperature region of 200-250℃, then the possible composition of the Au(Sn) core could be predicted by using the Au-Sn binary phase diagram. Finally, the exact composition of the Au(Sn) core were characterized by high resolution transmission electron microscopy (HRTEM).

    Contents ................................................. I Abstract ............................................... III Acknowledgements……………………………………………………VI Chapter 1 Introduction 1.1 Nanotechnology ........................................... 1 1.2 The Growth Mechanism of Nanostructure.........................5 1.2.1 Vapor-Liquid-Solid (VLS) Method................................................ …..5 1.2.2 Vapor- Solid (VS) Method .................................... ………………….9 1.2.3 Solution-Liquid-Solid (SLS) Method.................................................. .10 1.3 Background of Research ...............................................…14 1.3.1 Tin (IV) Oxide Properties ........................................…….…14 1.3.2 Heterostructure Structures ....................................…………….18 1.4 Motivation ............……………………………………….22 Chapter 2 Experimental 2.1 Furnace System .............................................. …..27 2.2 Sample Preparation...........................................…..27 2.3 Scanning Electron Microscope (SEM) Observation........................................ 29 2.4 Transmission Electron Microscope (TEM) Observation................................ 29 2.5 X-Ray Diffractometer Analysis................................................. 30 2.6 In-situ Transmission Electron Microscopy Observation................................. 31 Chapter 3 Results and Discussion 3.1 Pure SnO2 Nanowires................................................ 32 3.1.1 Morphologies Analysis................................................. 32 3.1.2 Structures Analysis by XRD...................................................... 34 3.1.3 Structures Analysis by HRTEM.................................................... 36 3.1.4 Composition Analysis by EDS...................................................... 38 3.2 Au-SnO2 Core-Shell Nanowires................................................ 40 3.2.1 Morphologies Analysis................................................. 40 3.2.2 Structures Analysis by HRTEM.................................................... 42 3.2.3 Composition Analysis by EDS ..................................................... 49 3.3 Thermal Expansion Behavior of Au-SnO2 Core-Shell Nanowires by In-situ TEM...................................................... 52 3.3.1 Morphologies Analysis................................................. 52 3.3.2 Thermal Expansion Behavior Analysis................................................. 54 3.4 Growth Model of Au-SnO2 Core-Shell Nanowires........................................... 60 3.4.1 Pure SnO2 Nanowires………………….................................. 60 3.4.2 Au-SnO2 Core-Shell Nanowires................................................ 62 Chapter 4 Summary and Conclusions…………….....……………66 References ...............................................68

    [1] Younan Xia, Peidong Yang, Yugung Sun, Yiying Wu, Brain Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., 15, 353(2003)
    [2] Yiying Wu and Peidong Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc., 123, 13, 3165(2001)
    [3] X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, 4, 298(2000)
    [4] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13, 2, 113(2001)
    [5] Allon I. Hochbaum, Rong Fan, Rongrui He, and Peidong Yang, “Controlled Growth of Si Nanowire Arrays for Device Integration,” Nano Lett., 5, 457(2005)
    [6] Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin Oxide Nanowires, Nanoribbons, and Nanotubes,” J. Phys. Chem. B., 106, 1274(2002)
    [7] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solution Growth of Crystalline III-V Semiconductors-An Analogy to Vapor-Liquid-Solid Growth,” Science 270, 5243, 1791(1995)
    [8] X. M. Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, “Growth of Single Crystal Nanowires in Supercritical Silicon Solution from Tethered Gold Particles on a Silicon Substrate,” Nano Lett. 3, 1, 93(2003)
    [9] Thaddeus B. Massalski and H. Okamoto, “Binary Alloy Phase Diagrams,” 2nd ed., 1, 430(1990)
    [10] Thaddeus B. Massalski and H. Okamoto, “Binary Alloy Phase Diagrams,” 2nd ed., 3, 2920(1990)
    [11] Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires,” Adv. Mater. 15, 1754(2003)
    [12] B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, “Field Emission and Photoluminescence of SnO2 Nanograss,” J. Appl. Phys. 98, 12, 124303(2005)

    [13] S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, “Origin of Low-temperature Photoluminescence from SnO2 nanowires Fabricated by Thermal Evaporation and Annealed in Different Ambients,” Appl. Phys. Lett. 88, 18, 183112(2006)
    [14] L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, “Room-temperature Low-power Hydrogen Sensor Based on a Single Tin Dioxide Nanobelt,” Appl. Phys. Lett. 88, 26, 263102(2006)
    [15] A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, “Room Temperature Gas Sensing Properties of SnO2/Multiwall-carbon-nanotube Composite Nanofibers,” Appl. Phys. Lett. 91, 13, 133110(2007)
    [16] S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, “Room Temperature Gas Sensitivity of Ultrathin SnO2 Films Prepared from Langmuir-Blodgett Film Precursors,” Appl. Phys. Lett. 89, 7, 071914(2006)
    [17] L. Lauhon, M. S. Gudisen, D. Wang, and C. M. Lieber, “Epitaxial Core-shell and Core-multishell Nanowire Heterostructures,” Nature 420, 6911, 57(2002)
    [18] C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor MOS Au-Ga2O3-GaN Nanowires,” Nano Lett. 8, 10, 3288(2008)
    [19] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, 6348, 56(1991)
    [20] P. M. Ajayan and S. Iijima, “Capillarity-induced Filling of Carbon Nanotubes,” Nature 361, 6410, 333(1993)
    [21] Y. Gao and Y. Bando, “Carbon Nanothermometer Containing Gallium - Gallium's Macroscopic Properties Are Retained on a Miniature Scale in this Nanodevice,” Nature 415, 6872, 599(2002)
    [22] T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, “Purification of Nanotubes,” Nature 367, 6463, 519(1994)
    [23] Y. B. Li, Y. Bando, D. Golberg, and Z.W. Liu, “Ga-filled Single-crystalline MgO Nanotube: Wide-temperature range Nanothermometer,” Appl. Phys. Lett. 83, 5, 999(2003)
    [24] N. W. Gong, M. Y. Lu, C. Y. Wang, Y. Chen, and L. J. Chen, “Au(Si)-filled -Ga2O3 Nanotubes as Wide Range High Temperature Nanothermometers,” Appl. Phys. Lett. 92, 7, 073101 (2008)
    [25] C. Y. Wang, N. W. Gong, and L. J. Chen, “High-sensitivity Solid-state Pb(Core)/ZnO(Shell) Nanothermometers Fabricated by a Facile Galvanic Displacement Method,” Adv. Mater. 20, 24, 1(2008)
    [26] Y. Gao, Y. Bando, and D. Golberg, “Melting and Expansion Behavior of Indium in Carbon Nanotubes,” Appl. Phys. Lett. 81, 22, 4133(2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE