研究生: |
李彥儒 Lee, Yan-Ru |
---|---|
論文名稱: |
同時監控型二設限韋伯分佈雙參數的單一EWMA和AEWMA固定和變動抽樣區間管制圖 Single EWMA and AEWMA FSI and VSI Charts for Simultaneous Monitoring Type-II Censored Weibull Shape and Scale Parameters |
指導教授: |
黃榮臣
Huwang, Long-Cheen |
口試委員: |
吳建瑋
Wu, Chien-Wei 黃郁芬 Huang, Yu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 型二設限 、韋伯分佈 、變動抽樣區間 、管制圖 、指數加權移動平均管制圖 、調適的管制圖 、修正管制界限 |
外文關鍵詞: | type-II censored, Weibull distribution, variable sampling intervals, control chart, EWMA, AEWMA, modified control limit |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在科技發達的現代,為了使產品有良好的品質,監控其壽命變化是一項重
要的議題。現今工業界常以韋伯分佈來描述產品的壽命,因此如何同時監控韋
伯分佈的形狀參數和尺度參數成為了研究的重點。在既有的文獻中較多在監控
韋伯分佈完整資料的形狀參數改變,而在本文中我們利用兩個現有的舒華特管
制圖的監控統計量,在考慮樣本資料為型二設限的條件上建構出能同時監控韋
伯分佈雙參數的EWMA 固定抽樣區間管制圖。接著我們引入變動抽樣區間的
想法來改進監控效率,建構兩種變動抽樣區間EWMA 管制圖並與文獻上現有
的監控方法來進行比較。此外,我們找出修正的管制界限來改善以參數估計值
建構EWMA 固定抽樣區間管制圖所帶來的缺點。最後我們將提出的監控方法
應用於一組碳纖維拉扯強度資料來說明所提出的管制圖在實務上的運用和表現。
As technology continuously advances, to make products with good quality, it is an important issue to monitor their lifetime during the manufacturing period. The production industry often uses Weibull distribution to represent the lifetime of products. Therefore, this paper focuses on how to simultaneously monitor the
shape and scale parameters of the Weibull distribution. There are a lot of studies on monitoring the shape parameter of Weibull distribution for complete data. In this article, for type-II censored data we use two existing Shewhart-type charting statistics to develop the EWMA and AEWMA FSI control charts for monitoring the shape and scale parameters of the Weibull distribution simultaneously. Further, we apply the concept of variable sampling intervals to construct two kinds of EWMA VSI control charts and compare them with the existing monitoring methods in literature. Additionally, we propose a modified control limit to improve the disadvantages of the EWMA FSI control chart developed with the estimated parameters. Finally, we apply the proposed monitoring methods to a breaking strength example from a carbon fiber process to demonstrate the applicability and performance of the proposed control schemes.
[1] Chen, G., Cheng, S. W. and Xie, H. (2001).“Monitoring process mean and variability with one EWMA chart."Journal of Quality Technology, 33(2), pp. 223-233.
[2] Faraz, A., Saniga, E. M. and Heuchenne, C. (2015).“Shewhart control charts for monitoring reliability with Weibull lifetimes."Quality and Reliability Engineering International, 31(8), pp. 1565–1574.
[3] Gandy, A. and Kvaloy, J. T. (2013).“Guaranteed conditional performance ofcontrol charts via bootstrap methods."Scandinavian Journal of Statistics, 40(4), pp. 647-668.
[4] Gong, M. and Mukherjee, A. (2019).“Design and comparison of some Shewhart‐type schemes for simultaneous monitoring of Weibull parameters."Quality and Reliability Engineering International, 35(4), pp. 889-901.
[5] Guo, B. and Wang, B. X. (2014).“Control charts for monitoring the Weibull shape parameter based on type-ii censored sample."Quality and Reliability Engineering International, 30(1), pp. 13-24.
[6] Guo, B., Wang, B. X. and Xie, M. (2014).“ARL-unbiased control charts for the monitoring of exponentially distributed characteristics based on type-II censored samples."Journal of Statistical Computation and Simulation, 84(12), pp. 2734–2747.
[7] Haq, A., Gulzar, R. and Khoo, M. B. C. (2018). “An efficient adaptive EWMA control chart for monitoring the process mean."Quality and Reliability Engineering International, 34(4), pp. 563-571.
[8] Haq, A. (2018).“A new adaptive EWMA control chart for monitoring the process dispersion."Quality and Reliability Engineering International, 34(5), pp. 846-857.
[9] Padgett, W. and Spurrier, J. D. (1990).“Shewhart-type charts for percentiles of strength distributions."Journal of Quality Technology, 22(4), pp. 283-288.
[10] Page, E. S. (1954).“Continuous inspection schemes." Biometrics, 41(1/2), pp. 100-115.
[11] Pascual, F. (2010).“EWMA charts for the Weibull shape parameter."Journal of Quality Technology, 42(4), pp. 400–416.
[12] Pascual, F. and Li, S. (2012).“Monitoring the Weibull shape parameter by control charts for the sample range of type II censored data."Quality and Reliability Engineering International, 28(2), pp. 233-246.
[13] Reynolds, M. R., Amin, R. W. and Arnold, J. C. (1990).“CUSUM charts with variable sampling intervals."Technometrics, 32(4), pp. 371-384.
[14] Roberts, S. W. (1959). “Control chart test based on geometric moving averages." Technometrics, 1(3), pp. 234-250.
[15] Saccucci, M. S. and Lucas, J. M. (1990).“Exponentially weighted moving average control schemes: properties and enhancements."Technometrics, 32(1), pp. 1-12.
[16] Shewhart, W. A. (1924). “Some application of statistical methods to the analysis of physical and engineering data."Bell System Technical Journal, 3(1), pp. 43-87.
[17] Zhang, C. W., Ye, Z. and Xie, M. (2017).“Monitoring the shape parameter of a Weibull renewal process."IISE Transactions, 49(8), pp. 800-813.