研究生: |
潘辰亞 Ya, Pan Chen |
---|---|
論文名稱: |
研究電荷交互作用力如何調控趨化素PF4四聚體結構 Characterization of the charge-charge interaction in mediating Chemokine PF4 tetramer formation |
指導教授: | 蘇士哲 |
口試委員: |
江昀緯
殷獻生 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 電荷交互作用力 、多聚體 |
外文關鍵詞: | Platelet factor 4 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
趨化素 (chemokine) 是一種具有吸引白血球的能力以及抑制或是促進血管新生的功能的蛋白,它的各種聚合狀態 (oligomerization state) 和它能影響的生物功能息息相關。Platelet factor-4 (PF4又稱作第四型血小板因子、CXCL4) 為第一個被發現具有抑制血管新生的趨化素。在過去的研究中指出,四聚體的PF4和黏多醣 (GAGs) 具有很強的結合能力,而單體的PF4也被報導說可能和膜蛋白受體(GPCR)結合的能力並進行其下游的反應。趨化素能以不同型態的多聚體來執行不同的的生理活性,研究它如何形成聚合狀態的因素可以使我們能精準地調控下游所引發的反應。然而在過去有關於趨化素聚合狀態的研究,多聚體的形成和電荷-電荷的交互作用力息息相關,利用改變溶液的酸鹼度和氯化鈉的含量使得胺基酸改變其電性或破壞其鹽橋作用來使得四聚體的PF4形成二聚體。另外對於界面上的胺基酸也利用了點突變來改變界面的電性,使得本來相吸的交互作用力改為相斥,以期望得到穩定的PF4二聚體。我們進行了改變溶液酸鹼度及鹽類含量利用核磁共振的二維光譜觀察是否在PF4上可以改變它的多聚體型態;也對點突變後的PF4進行了顆粒大小排阻(size-exclusion)、超高速離心分析、肝素 (heparin) 的結合實驗和核磁共振二維光譜來觀察其生物物理特性與多聚體型態的改變。我們發現了PF4 在不同的酸鹼度和鹽類含量下可以改變其多聚體型態與結構;其他點突變的PF4也對其結構和多聚體型態與結構造成影響,因此我們認為界面上的胺基酸帶電性對於整個多聚體的形成非常重要。未來可以利用其他點突變的胺基酸來進行更深入的研究,期望得到穩定的各種型態的PF4。
Chemokine is a protein that is described for their abilities to recruit leukocytes and affect inflammatory. Chemokines has different oligomerization states to execute different bio-functions. Platelet factor-4 (PF4 or named as CXCL4) is the first chemokine described as anti-angiogenesis chemokine. Tetrameric PF4 has high affinity to glycosaminoglycans (GAGs) while monomeric PF4 has been speculated to bind with G-protein coupled receptor (GPCR) to trigger the downstream signal. For execute the bio-functions, PF4 oligomers should be precisely controlled and the factor in mediating PF4 assembling is worthwhile for studying. There is a reported relationship between charge-charge interaction and oligomerization states of chemokines. By changing the content of salt and pH value, PF4 has distinct salt-bridge interaction and protonation status of residues. The effects modulate the transition of tetramer, dimer and monomer. We made point mutations on the interface to disrupt the intrinsic interaction. NMR HSQC method reported PF4 basic structural property and oligomerization states. We also tested the experiments of heparin binding, size-exclusion chromatography and analytical ultracentrifuge to classify the biophysical properties. We reveal that charge-charge and salt-bridge interaction actually dominantly regulates the oligomerization states, as the PF4 mutations with influence in structure and oligomerization states. In the future, we could do deeper research on the factors of oligomerization states by other point mutations. The effort would contribute in the preparation of pure oligomerization states of PF4.
1. Belperio, J. A., Keane, M. P., Arenberg, D. A., Addison, C. L., Ehlert, J. E., Burdick, M. D., and Strieter, R. M. (2000) CXC chemokines in angiogenesis, Journal of leukocyte biology 68, 1-8.
2. Kuo, J. H., Chen, Y. P., Liu, J. S., Dubrac, A., Quemener, C., Prats, H., Bikfalvi, A., Wu, W. G., and Sue, S. C. (2013) Alternative C-terminal helix orientation alters chemokine function: structure of the anti-angiogenic chemokine, CXCL4L1, The Journal of biological chemistry 288, 13522-13533.
3. Allen, S. J., Crown, S. E., and Handel, T. M. (2007) Chemokine: receptor structure, interactions, and antagonism, Annual review of immunology 25, 787-820.
4. Dubrac, A., Quemener, C., Lacazette, E., Lopez, F., Zanibellato, C., Wu, W. G., Bikfalvi, A., and Prats, H. (2010) Functional divergence between 2 chemokines is conferred by single amino acid change, Blood 116, 4703-4711.
5. Vandercappellen, J., Van Damme, J., and Struyf, S. (2011) The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer, Cytokine & growth factor reviews 22, 1-18.
6. Zhang, X., Chen, L., Bancroft, D. P., Lai, C. K., and Maione, T. E. (1994) Crystal structure of recombinant human platelet factor 4, Biochemistry 33, 8361-8366.
7. Zetter, B. R. (1998) Angiogenesis and tumor metastasis, Annual review of medicine 49, 407-424.
8. Gastl, G., Hermann, T., Steurer, M., Zmija, J., Gunsilius, E., Unger, C., and Kraft, A. (1997) Angiogenesis as a target for tumor treatment, Oncology 54, 177-184.
9. Folkman, J. (1971) Tumor angiogenesis: therapeutic implications, The New England journal of medicine 285, 1182-1186.
10. De, S., Razorenova, O., McCabe, N. P., O'Toole, T., Qin, J., and Byzova, T. V. (2005) VEGF-integrin interplay controls tumor growth and vascularization, Proceedings of the National Academy of Sciences of the United States of America 102, 7589-7594.
11. Carmeliet, P. (2005) Angiogenesis in life, disease and medicine, Nature 438, 932-936.
12. Risau, W. (1997) Mechanisms of angiogenesis, Nature 386, 671-674.
13. Struyf, S., Burdick, M. D., Proost, P., Van Damme, J., and Strieter, R. M. (2004) Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis, Circulation research 95, 855-857.
14. Gupta, S. K., and Singh, J. P. (1994) Inhibition of endothelial cell proliferation by platelet factor-4 involves a unique action on S phase progression, The Journal of cell biology 127, 1121-1127.
15. Braunersreuther, V., Mach, F., and Steffens, S. (2007) The specific role of chemokines in atherosclerosis, Thrombosis and haemostasis 97, 714-721.
16. Struyf, S., Salogni, L., Burdick, M. D., Vandercappellen, J., Gouwy, M., Noppen, S., Proost, P., Opdenakker, G., Parmentier, M., Gerard, C., Sozzani, S., Strieter, R. M., and Van Damme, J. (2011) Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3, Blood 117, 480-488.
17. Veldkamp, C. T., Peterson, F. C., Pelzek, A. J., and Volkman, B. F. (2005) The monomer-dimer equilibrium of stromal cell-derived factor-1 (CXCL 12) is altered by pH, phosphate, sulfate, and heparin, Protein science : a publication of the Protein Society 14, 1071-1081.
18. Mayo, K. H., and Chen, M. J. (1989) Human platelet factor 4 monomer-dimer-tetramer equilibria investigated by 1H NMR spectroscopy, Biochemistry 28, 9469-9478.
19. Carlson, J., Baxter, S. A., Dreau, D., and Nesmelova, I. V. (2013) The heterodimerization of platelet-derived chemokines, Biochimica et biophysica acta 1834, 158-168.
20. Rauova, L., Poncz, M., McKenzie, S. E., Reilly, M. P., Arepally, G., Weisel, J. W., Nagaswami, C., Cines, D. B., and Sachais, B. S. (2005) Ultralarge complexes of PF4 and heparin are central to the pathogenesis of heparin-induced thrombocytopenia, Blood 105, 131-138.
21. Nesmelova, I. V., Sham, Y., Gao, J., and Mayo, K. H. (2008) CXC and CC chemokines form mixed heterodimers: association free energies from molecular dynamics simulations and experimental correlations, The Journal of biological chemistry 283, 24155-24166.
22. Lortat-Jacob, H., Grosdidier, A., and Imberty, A. (2002) Structural diversity of heparan sulfate binding domains in chemokines, Proceedings of the National Academy of Sciences of the United States of America 99, 1229-1234.
23. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling, Biophysical journal 78, 1606-1619.
24. Holzwarth, G., and Doty, P. (1965) The Ultraviolet Circular Dichroism of Polypeptides, Journal of the American Chemical Society 87, 218-228.
25. Greenfield, N., and Fasman, G. D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8, 4108-4116.
26. Venyaminov, S., Baikalov, I. A., Shen, Z. M., Wu, C. S., and Yang, J. T. (1993) Circular dichroic analysis of denatured proteins: inclusion of denatured proteins in the reference set, Anal Biochem 214, 17-24.
27. Greenfield, N. J. (2006) Using circular dichroism spectra to estimate protein secondary structure, Nat Protoc 1, 2876-2890.