簡易檢索 / 詳目顯示

研究生: 葉憲錡
論文名稱: 微型渦輪機廢熱驅動之吸收式冷凍系統性能分析與測試研究
Performance analysis of Absorption Refrigeration System using Microturbine Exhaust Heat
指導教授: 蔣小偉
口試委員: 劉承賢
黃智永
蔡博章
郭啟榮
蔣小偉
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 83
中文關鍵詞: 微型渦輪機吸收式冷凍系統
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是引進分散式發電及廢熱回收的設計概念,利用改良後之Jet公司的SPT5微型渦輪引擎(Microturbine)為基礎進行系統的分析,該發電系統在全轉速時發電量可達14kW、效率亦達10%以上,並利用其運轉時會排放高溫廢熱(500~700°C)的特性結合吸收式冷凍空調(Absorption Refrigeration System ,ARS),將能同時達成發電及製冷輸出,並大幅提升燃料的使用率,減少能源的損耗。
    本研究主要針對微型渦輪機及ARS及複合系統三部分進行分析,首先建立起包含發電量、效率、排熱等參數的微型渦輪機性能曲線,再利用程式建立單、雙效應之ARS模型,進行參數分析歸納出各站位溫度對系統性能係數的影響並搭配擴散吸收式冷凍系統的實驗作進一步驗證與參數最佳化;最後分析複合系統在不同渦輪機轉速下之性能並作環境的分析。
    由研究結果可知,單、雙效應的系統能輸出14.4kW的發電量並分別可產生40及80kW的製冷功率,其各自的燃料使用率亦高達37及70%,在許多國家中已極具競爭力。上述結果將可提供後續在高潔淨電力及能源回收之複合系統研究上之參考依據。


    Distributed power generation is a current trend. Our lab has demonstrated that microturbines can be of high efficiency, light weight, compact, and mobile. On the other hand, the absorption refrigeration system (ARS) can use exhaust heat as input. Using a waste heat driven generator to replace the conventional compressor, the ARS can be a great energy saver with low capital cost, low noise, and no electricity input to drive the compressor.

    In this study, we used a microturbine (SPT5 model made by JETCAT) as the main power source for our system. The microturbine has attained a thermal to electric efficiency of 10% with about 700-1000K exhaust gas temperature. Then we would build the simulation program of single and double effect ARS and analyze the Coefficients of Performance(COP) and temperatures in both ARS systems. With these data, we can perform a study of the configuration design and performance analysis of the system. Finally, the feasibility of this system would be analyzed.

    In conclusion, by using the concept of waste heat recovery, the overall efficiency of the system can be greatly improved. With this configuration, it can provide an electricity load of 14.4 kW, a cooling load of 80 kW, and the fuel usability of the system can be about 70%. Finally, the analysis simulation system for a GT-ARS system is completed. This system can provide future references in high efficiency and clean environment with heat recovery system.

    目錄 摘要 I Abstract II 誌謝………………………………………………………………..III 符號說明 IV 圖目錄……………………………………………………………..IX 表目錄…………………………………………………………….XII 第一章、 緒論 1 1-1、 前言 1 1-2、 研究動機與目的 2 1-3、 文獻回顧 4 第二章、 系統模型 9 2-1、 微型渦輪發電系統(MicroTurbine) 9 2-1-1. 壓縮機(Compressor) 9 2-1-2. 渦輪機 (Turbine) 10 2-1-3. 燃燒室(Combustor) 11 2-2、吸收式冷凍系統(ARS) 12 2-2-1、發生器(Generator) 14 2-2-2、冷凝器(Condenser) 15 2-2-3、蒸發器(Evaporator) 16 2-2-4、吸收器(Absorber) 17 2-2-5、幫浦(Pump) 17 2-2-6、膨脹閥(Expansion Valve) 18 2-2-7、工作流體 19 2-2-8、工作流體性質 19 2-2-9、ARS系統COP 21 2-3、熱交換器(Heat Exchanger) 21 2-3-1、鰭片型熱交換器 22 2-4、擴散吸收式冷凍系統 24 第三章、 研究方法 27 3-1、 研究架構 27 3-2、 微型渦輪機(MicroTurbine) 28 3-2-1、 微型渦輪機系統實驗架設 29 3-2-2、 微型渦輪機實驗儀器 30 3-2-3、微型渦輪機系統模擬 32 3-3、 吸收式冷凍系統(ARS) 32 3-3-1、 單效應ARS模擬流程 33 3-3-2、 雙效應ARS模擬流程 35 3-3-3、 擴散吸收式冷凍系統實驗配置 37 3-3-4、 吸收式冷凍系統實驗儀器 38 3-4、 系統效率 41 第四章、 研究結果與討論 43 4-1、 微型渦輪機 43 4-1-1、 渦輪機實驗量測 43 4-1-2、 渦輪機實驗模擬分析 45 4-2、 吸收式冷凍系統 48 4-2-1、 單效應吸收式冷凍系統程式驗證 48 4-2-2、雙效應吸收式冷凍系統程式驗證 49 4-2-3、參數分析 51 4-2-4、擴散吸收式冷凍系統實驗 55 4-2-5、吸收式冷凍系統參數最佳化 59 4-3、 系統分析 60 4-4、環境分析 63 4-5、Capstone引擎複合效率分析 65 第五章、 結論與未來建議 67 5-1、 結論 67 5-2、 未來建議 69 參考文獻.…………………………………………………………72 附錄………………………….……………………………………76

    [1] Batt,Gordon,’’Jet Flight Triumph,’’Radio Concrol Modeler , pp.148-150,1983。
    [2] C.F.McDonald and D.G.Wilson ’'The utilization of recuperated and regenerated engine cycle for high-efficiency gas turbine in the 21st century’’ ,Applied Thermal Engineering Volume 16, Issues 8–9, August–September 1996, Pages 635–653。
    [3] 黃博昌,微型渦輪發電系統設計、分析與測試研究,國立清華大學碩士論文,2009。
    [4] 莊秉勳,微型渦輪發電系統之開發,國立清華大學碩士論文,2012。
    [5] P.J.Wilbur,C.E.Mitchell ’’ Solar absorption air conditioning alternatives’’ ,Solar Energy Volume 17, Issue 3, July 1975, Pages 193–199。
    [6] D.W.SUN” COMPARISON OF THE PERFORMANCES OF NH3-H20, NH3-LiNO3 AND NH3-NaSCN ABSORPTION REFRIGERATION SYSTEMS”, Energy Convers. Mgmt Vol. 39, No. 5/6, pp. 357-368, 1998。
    [7] 李化治,崔胜国,王立” 对影响扩散—吸收式冰箱COP热力参数的分析”,低温与制冷Low Temperature and SpecialtyGases第18卷第6期2000年12月
    [8] P.Srikhirin, S.Aphornratana” Investigation of a diffusion absorption refrigerator”, Applied Thermal Engineering 22 (2002) 1181–1193
    [9] M. Venegas , M. Izquierdo, M. de Vega and A. Lecuona’’ Thermodynamic study of multistage absorption cycles using low-temperature heat’’, INTERNATIONAL JOURNAL OF ENERGY RESEARCHInt. J. Energy Res. 2002; 26:775–791
    [10] A.Şencana, K.A. Yakuta, S.A. Kalogiroub ‘’Exergy analysis of lithium bromide/water absorption systems’’, Renewable Energy Volume 30, Issue 5, April 2005, Pages 645–657。
    [11] 林俊宏,蔡嘉晉,蘇金佳 ’’ 發生器對小型氨水型吸收式冷凍系統之性能影響研究’’, 中國機械工程學會第二十四屆全國學術研討會論文集,論文編號:A19-0021
    [12] R.Gomri “Second law comparison of single effect and double effect vapour absorption refrigeration systems”, Energy Conversion and Management 50 (2009) 1279–1287。
    [13] S.C. Kaushik , A.Arora “Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems”, international journal of refrigeration32(2009) 1247 – 1258
    [14] 黃武彬,固態氧化物燃料電池(SOFC)結合氣渦輪機(GT)應用於冷熱電聯產系統(CCHP)中之配置設計與性能分析,國立清華大學碩士論文,2010。
    [15] Jetcat-katalog-2013-1, http://www.jetcat.de
    [16] 立紳有限公司,http://www.rixen.com.tw/pc.htm
    [17] 開昌貿易股份有限公司,http://www.kaizer.com.tw/clients/Model2/news/news_1.jsp
    [18] 江吉軒,微型渦輪發電機應用於冷熱電聯產系統之配置設計與性能分析,國立清華大學碩士論文,2013。
    [19] 青柳集團,http://www.aoyagihk.com.hk/big5/index.html
    [20] 李化治,崔胜国,王立” 对影响扩散—吸收式冰箱COP热力参数的分析”,低温与制冷Low Temperature and SpecialtyGases第18卷第6期2000年12月
    [21] Industrial Refrigeration Consortium,’’Properties of R-717(Anhydrous Ammonia)’’ , University of Wisconsing,2005.
    [22] DeWitt Bergman Lavine,’’Fundamentals of Heat and Mass Transfer’’,Wiley 6th edition,p137-153,2007.
    [23] 台灣中油全球資訊網http://www.cpc.com.tw/big5/home/index.asp/
    [24] 台灣電力公司http://www.taipower.com.tw/
    [25] R. Shankar, T. Srinivas” Solar Thermal Based Power and Vapor Absorption Refrigeration System”, Procedia Engineering Volume 38, 2012, Pages 730–736
    [26] Capstone公司http://www.capstoneturbine.com/
    [27] G.Starace, L.De Pascalis’’ An enhanced model for the design of Diffusion Absorption Refrigerators’’ ,international journal of refrigeration36(2013) 1495 – 1503
    [28] D.W.SUN” THERMODYNAMIC DESIGN DATA AND OPTIMUM DESIGN MAPS FOR ABSORPTION REFRIGERATION SYSTEMS”,Applied Thermal Engineering Vol. 17, No. 3, pp. 21 l-221, 1997
    [29] J. Patek and J. Klomfar” Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system”, Int. J. Rrfrig. Vol. 18, No. 4, pp. 228 234, 1995
    [30] A. Paurine, G.G. Maidment, I.W Eames, J. Missenden, A. Day” A REVIEW OF “PUMPLESS” ABSORPTION REFRIGERATION CYCLES”,VII Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources”
    [31] I. Horuz a, T.M.S. Callander” Experimental investigation of a vapor absorption refrigeration system”, International Journal of Refrigeration 27 (2004) 10–16
    [32] N. Ben Ezzine, M. Barhoumi, Kh. Mejbri, S. Chemkhi, A. Bellagi” Solar cooling with the absorption principle: First and Second Law analysis of an ammonia-water double-generator absorption chiller”, Desalination 168 (2004) 137-144
    [33] L.A.Domínguez-Inzunza,J.A.Hernández-Magallanes,M.Sandoval-Reyes,W. Rivera“Comparison of the performance of single-effect, half-effect, double- effect in series and inverse and triple-effect absorption cooling systems operating with the NH3 eLiNO3 mixture”, Applied Thermal Engineering 66 (2014) 612-620

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE