簡易檢索 / 詳目顯示

研究生: 邱聖弘
Sheng-Hung Chiu
論文名稱: 電化學氣泡式微型幫浦於純血輸送之研究
An Air-Bubble-Actuated Electrochemical Micropump for On-Chip Blood Transportaton
指導教授: 劉承賢
Cheng-Hsien Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 42
中文關鍵詞: 微型幫浦電解空氣氣泡表面改質
外文關鍵詞: micropump, electrolysis, air bubble, surface modification
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 整合機、電、生、化的血液檢測型微流體系統晶片,在臨床診斷、醫療檢測上愈發扮演重要的角色,藉由血液的檢測,可以得知許多身體的健康訊息。微幫浦是此類微流體晶片上極具挑戰的研發重點,其發展以及應用,國際間正朝向一種能達到低耗能、低驅動電壓以及室溫操作來發展,以避免對檢測的血液內細胞產生影響。電解氣泡方式是最為符合以上三要件之致動器,但傳統電解氣泡式微幫浦受限於流道中的液體,電解造成液體pH值生化特性的改變以及流道阻塞(chocking & sticking)的現象,大多不能用在血液傳輸上。本研究發展出一種新型電解氣泡致動式微流體幫浦,藉由流道形狀與鐵弗龍(Teflon)疏水區塊的設計形成一個特殊之隔離來創造一種新的幫浦機制,使電解液與欲推動液體分隔開來,適合用在微流體晶片的血液傳輸上。再加上對氣泡產生的時序控制,可以達到連續輸送微流體的目的。我們還對流道表面作改質,以防止因為血小板凝結造成的阻塞(clotting)。經由我們的實驗結果,顯示此一裝置不但製程簡單且可有效的輸送流體前進。且藉由在不同施加電壓下,量測氣泡膨脹時間以及氣泡排除時間以計算所需的連續控制信號操作頻率,以利於精確控制流體流速。
    本研究中,我們成功的發展了一種新式的電化學微型幫浦,其關鍵特色是低耗能且不影響待驅動流體的pH值等生化特性。此幫浦運作時,無須高溫、高電壓、強磁場等操作條件,而以空氣氣泡間接致動輸送血液,相較於其他致動機制,其非破壞性的優點,尤適用在生物體的輸送。pH值及血小板黏附測試、設計概念、理論推導、微製程、以及性能量測全都詳細敍述於本文各章節中。以未來應用端來看,特別適合可攜式(portable)及植入式(implantable)的低耗能生醫晶片。


    A novel electrolysis-based micropump using air bubble to achieve indirect actuation is proposed and successfully demonstrated. Unlike most other electrochemical micropumps, our micropump could drive microfluid without the pH-value variation and the choking/sticking phenomena of electrolytic bubbles in the main channel. Besides, the room temperature operation and the low driving voltage used for the electrolysis actuation minimize the possibility of cell-damage. It is promising for biomedical applications, especially for the blood transportation. The whole blood is an intrinsically complex material and difficult to be manipulated in the microdevices. Moreover, the on-chip electrolysis-bubble actuator with the features of large actuation force, low voltage and low power consumption enable portable and implantable lab-on-a-chip microsystems. Utilizing the hydrophobic trapeziform pattern located at the junction of the T-shaped microchannel, the micropump drives the pumped fluid in the main channel and isolates it from the electrolytic bubbles. Our proposed micropump can be used for a variety of applications without constraints on the pumped liquid. Polyethylene glycol (PEG) is employed to modify the surface of PDMS microchannel to prevent the platelet adhesion during pumping operation. According to the platelet adhesion test, there is no clotting during blood pumping operation. The pH-value variation and distribution in the side channel and the main channel is also characterized during electrolysis-actuation operation. Experimental results show that the liquid displacement and the pumping rate could be easily and accurately controlled via the signal of two-phase peristaltic sequence and the periodic generation of electrolytic bubbles. With the applied voltage of 2.5 volts, the maximum pumping rate of 121 nl/min and 88 nl/min were achieved for the DI water and the whole blood, respectively, with the microchannel cross section of 100×50 μm. In this thesis, the design, microfabrication process, characterization and the experimental demonstration of this novel micropump are reported.

    1. Introduction - 1 - 1.1 Background and Motivation - 1 - 1.2 Survey of Literature - 2 - 2. Device Development - 7 - 2.1 Design Concept and Working Principle - 7 - 2.2 Theoretical Analysis and Modeling - 11 - 2.2.1 Electrolysis - 11 - 2.2.2 Modeling of Micropump - 13 - 2.3 Anticoagulability -16 - 3. Micro Fabrication - 18 - 3.1 Precess Flow -18 - 3.2 Surface Modification - 20 - 3.3 Preparation for PH-Value Gauging in Microchannels - 21 - 3.4 Preparation for Human Whole Blood - 21 - 4. Experimental demonstration and Results -22 - 4.1 Experimental Setup -22 - 4.2 Results and Discussion - 24 - 4.2.1 Pressure and Flow Rate Testing - 27 - 4.2.2 Leakage Testing - 30 - 4.2.3 In Situ Recording of PH-value Variation and Distribution - 32 - 4.2.4 Platelet Adhesion Tests - 33 - 5. Conclusion -36 - 5.1 Summary -36 - 5.2 Future Applications -37 - References -39 -

    [1]A. Manz, N. Graber, H. M. Widmer, “Micro total analytical system,” Sensors and Actuators B, pp. 244-248, 1990.
    [2]T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science, 298, pp.580-584, 2002.
    [3]J. Tudos, G. A. J. Besselink and R. B. M. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry,” Lab Chip, 1, 83–95, 2001.
    [4]D. Figeys and D. Pinto, “Lab-on-a-chip: a revolution in biological and medical sciences,” Anal. Chem., pp. 330A–335A, 2000.
    [5]D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta, 507, 11–26, 2004.
    [6]T. H. Schulte, R. L. Bardell and B. H. Weigl, “Microfluidic technologies in clinical diagnostics,” Clin. Chim. Acta, 321, 1–10, 2002
    [7]D. J. Laser and J. G. Santiago, “A Review of Micropumps,” J. Micromech. Microeng., vol. 14, no. 6, pp. R35-R64, 2004.
    [8]Deshmukh AA, Liepmann D, Pisano AP , “Continuous micromixer with pulsatile micropumps,” Technical digest of the IEEE solid state sensor and actuator workshop, Hilton Head Island, p 73–76, 2000.
    [9]A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, “Patterning electro-osmotic flow with patterned surface charge,” Phys. Rev. Lett., vol. 84, no. 15, pp. 3314–3317, Apr. 2000.
    [10]A. Richter, A. Plettner, K. A. Hofmann, and H. Sandmaier, “A micromachined electrohydrodynamic (EHD) pump,” Sens. Actuators A, Phys., vol. 29, no. 2, pp. 159–168, Nov. 1991.
    [11]T. K. Jun and C. J. Kim, “Valveless pumping using traversing vapor bubbles in microchannels,” J. Appl. Phys., vol. 83, no. 11, pp. 5658–5664, Jun. 1998.
    [12]J. H. Tsai and L. Lin, “A thermal-bubble-actuated micronozzle-diffuser pump,” J. Microelectromech. Syst., vol. 11, no. 6, pp. 665–671, Dec. 2002.
    [13]J. Xie, J. Shih, Q. Lin, B. Yang and Y.C. Tai, “Surface Micromachined Electrostatically Actuated Micro Peristaltic Pump,” Lab Chip, 4: 495-501, 2004.
    [14]JG Smits, “Piezoelectric Micropump with Three Valves Working Peristaltically,” Sensors & Actuators A 21- 23, pp. 203-206, 1990.
    [15]C.M. Cheng and C.H. Liu, “An Electrolysis-Bubble-Actuated Micropump Based on the Roughness Gradient Design of Hydrophobic Surface,” J. Microelectromech. Syst., vol. 16, no. 5, pp. 1095-1105, Oct. 2007.
    [16]D. A. Ateya, A. A. Shah, and S. Z. Hua, “An electrolytically actuated micropump,” Review of Scientific Instruments, Vol. 75, 915-920, 2004.
    [17]S.Z. Hua, F. Sachs, D.X. Yang and H.D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Anal. Chem. 74 , pp. 6392–6396, 2002.
    [18]S. Bo‥hm, W. Olthuis and P. Bergveld, Proc. IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS2000), pp. 92–95, 2000.
    [19]Papavasiliou, A.P., Pisano, A. P., and Liepmann, D., "High-Speed and Bi-Stable Electrolysis-Bubble Actuated Gate Valves," Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Transducers '01), Munich, Germany, June 10-14, 2001, 940-943.
    [20]S. Bohm, B. Timmer, W. Olthuis, and P. Bergveld, “A closed-loop controlled electrochemically actuated micro-dosing system,” J. Micromech. Microeng. , vol. 10, pp. 498-504, 2000.
    [21]C. G. Cameron and M. S. Freund, ”Reversible and Efficient Materials-based Actuation by Electrolytic Phase Transformation,” Chemical Engineering & Technology, vol.26, pp. 1007-1011, 2003.
    [22]Chen-Ta Ho, Ruei-Zeng Lin, Hwan-You Chang, and Cheng-Hsien Liu, “Micromachined Electrochemical T-switches for cell sorting applications,” Lab Chip, 2005, 5(11), pp. 1248–1258.
    [23]Yang JT, Chen JC, Huang KJ, Yeh JA, “Droplet manipulation on a hydrophobic textured surface with roughened patterns,” J Microelectromech Sys., 15:697–707, 2006.
    [24]A. M. Schwartz, C. A. Rader and E. Huey, “ Contact angle, wettability, and adhesion,” ed. R. F. Gould, American Chemical Society, Washington, DC, 1964.
    [25]Zhang Z, Boccazzi P, Choi H, Perozziello G, Sinskey A, Jensen K, “ Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor,” Lab Chip 2006, 6:906-913.
    [26]C. Donzel , M. Geissler , A. Bernard , H. Wolf , B. Michel , J. Hilborn , E. Delamarche, “Hydrophilic Poly(dimethylsiloxane) Stamps for microcontact printing,” Advanced Materials, 2001. 13 (15): p. 1164-7.
    [27]Knoller S, Shpungin S, Pick E., “The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b559,” J Biol Chem. 1991 Feb 15;266(5):2795–2804.
    [28]Philippe F, Lacombe C, Bucherer C, Drobinski G, Montalescot G and Thomas D(2001), “Whole blood viscosity measurement in acute myocardial infarction: feasibility and significance,” J. Mal. Vasc. 26 243–7
    [29]Lide D R (ed) 2001 CRC Handbook of Chemistry and Physics (Boca Raton, FL: CRC Press)
    [30]R. Fahraeus and T. Lindquist, Am. J. Physiol., 1931, 96, 562–568.
    [31]D.-S. Meng, T. Cubaud, C.-M. Ho, and C.-J. Kim, “A membrane breather for micro fuel cell with high concentration methanol,” in Proc.Hilton Head: A Solid State Sensor, Actuator Microsyst. Workshop, 2004, pp. 141–144.
    [32]Singh A, Freeman B D and Pinnau I 1998 J. Polym. Sci. B 36 289–301
    [33]Merkel T C, Bondar V I, Nagai K, Freeman B D and Pinnau I 2000 J. Polym. Sci. B 38 415–34
    [34]Prabhakar R S, Merkel T C, Freeman B D, Takeshi Imizu T and Higuchi A 2005 Macromolecules 38 1899–910

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE