研究生: |
賀安麗 |
---|---|
論文名稱: |
以水熱、共沉法二步驟製備富鋰錳基正極材料x Li2MnO3.(1-x)LiNi1/3Co1/3Mn1/3O2之電性表現 Investigation of Electrical Performance of x Li2MnO3.(1-x)LiMO2(M=Ni,Co,Mn) Prepared through a Two-stage Process of Co-precipitation and Hydrothermal Methods |
指導教授: | 蔡哲正 |
口試委員: |
林居南
俎永熙 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 富鋰材料 、共沉法 、水熱法 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Li2MnO3與LiNi1/3Co1/3Mn1/3O2皆為層狀結構,兩者混合能形成充放電區間為2~4.8 V的固溶體富鋰材料Li2MnO3.LiNi1/3Co1/3Mn1/3O2,為一種高伏材料。此材料第一次充放電時將因Li2MnO3氧化脫出Li2O造成不可逆的電容量損失。本實驗討論pH值在共沉法製備富鋰材料前驅體時對電性的影響,此外嘗試使用水熱法與共沉法兩步驟製備活性物質:分別將兩固溶成分Li2MnO3與LiNi1/3Co1/3Mn1/3O2以水熱法與共沉法製備並調整兩製程先後順序,觀察其對電性的影響。研究發現,兩步驟製備法中以先水熱製備Li2MnO3後再共沉法製備LiNi1/3Co1/3Mn1/3O2能降低第一次充放電時的不可逆電容量損失,且具有比直接共沉法製備富鋰材料更好的電容量與循環性能。
Both Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 are layered structure, and they can be mixed to form a solid solution Li2MnO3.LiNi1/3Co1/3Mn1/3O2, which its charge-discharge region between 2 and 4.8 V. This material will release Li2O due to Li2MnO3 irreversible decomposition when voltage are above 4.5 V in the first charge cycle, and that’s the reson for loss of capacity in the first cycle. This experiment is composed by three part. First, I will discuss how the pH value affect the electrochemical performances when preparing Li2MnO3.LiNi1/3Co1/3Mn1/3O2 precursor through co-precipitation method. The second and the third parts will take apart Li2MnO3.LiNi1/3Co1/3Mn1/3O2 into Li2MnO3 and LiNi1/3Co1/3Mn1/3O2. We try to prepare Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 through hydrothermal and co-precipitatio method, respectively, and observe how the order of these two step processes affect the electrochemical performances. In my report,process that using hydrothermal method to prepare Li2MnO3 first then co-precipitaion method to prepare LiNi1/3Co1/3Mn1/3O2 thereafter can lower the capacity loss in the first cycle, and even have higher capacity and better cycle ability comparing to Li2MnO3.LiNi1/3Co1/3Mn1/3O2 prepared by co-precipitation method.
[1] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, “Challenges in the development of advanced Li-ion batteries: a review,” Energy & Environmental Science, vol. 4, pp. 3243-3262, 2011
[2] F. Cheng , J. Liang , Z. Tao , and J. Chen, ” Functional Materials for Rechargeable Batteries,” Advanced Materials, vol. 23,pp. 1695-1715, 2011
[3] 黃可龍,王兆祥,劉素琴,馬振基。鋰離子電池原理與技術。台北:五南圖書出版社,2010。
[4] M. M. Thackeray, C. Wolverton and E. D. Isaacs, “Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries,” Energy & Environmental Science, vol. 5, pp. 7854–7863, 2012
[5] G. Jeong,Y.-U. Kim, H. Kim, Y.-J. Kim and H.-J. Sohn, “Prospective materials and applications for Li secondary batteries,” Energy & Environmental Science, vol. 4, pp. 1986–2002, 2011
[6] B. Xu, D. Qian, Z. Wang, Y. S. Meng,” Recent progress in cathode materials research for advanced lithium ion batteries,” Materials Science and Engineering R,vol. 73,pp. 51-65, 2012
[7] T. Ohzuku and Y. Makimura, “Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries,” Chemistry Letters, no. 8, pp. 744–745, 2001
[8] T. Ohzuku, Y. Makimura, “Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries,” Chemistry Letters, no. 7,pp.642-643, 2001
[9] Z. Lu, D.D. MacNeil, and J.R. Dahn, “New Layered Cathode Materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for Lithium Ion Batteries,” Electrochemical and Solid State Letters, vol. 4, pp. A191-A194, 2001
[10] M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, “Lithium insertion into manganese spinels,” Materials Research Bulletin, vol.18, pp.461-472, 1983
[11] J.B. Goodenough, M.M. Thackeray, W.I.F. David, P.G. Bruce, ”Lithium Insertion Extraction Reactions with Manganese Oxides,” Revue de Chimie Minerale, vol. 21,pp. 435–455, 1984
[12] T. Ohzuku, S. Takeda, M. Iwanaga, “Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (M3: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries,”Journal of Power Sources, vol. 81–82, pp. 90-94, 1999
[13] A .K Padhi, K.S. Nanjundaswamy and J. B. Goodenough, “Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries,” Journal of the Electrochemical Society, vol. 144, pp.1188-1194, 1997
[14] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, “Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates,” Journal of the Electrochemical Society, vol. 144, pp. 1609–1613, 1997
[15] A. Yamada, S.C. Chung,”Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4V cathode materials for lithium batteries,” Journal of the Electrochemical Society, vol.148, pp. A960–A967, 2001
[16] J. Wolfenstine, J. Allen, “LiNiPO4-LiCoPO4 sole solutions as cathodes,” Journal of Power Sources, vol. 136, pp. 150–153, 2004
[17] J. Wolfenstine, J. Allen, “Ni3+/Ni2+ redox potential in LiNiPO4,” Journal of Power Sources, vol. 142, pp. 389–390, 2005
[18] A. Nyte´ n, A. Abouimrane, M. Armand, T. Gustafsson, J.O. Thomas, “Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material,“ Electrochemistry Communications, vol. 7, pp. 156–160, 2005
[19] R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, “Structure and Electrochemical Performance of Li2MnSiO4 and Li2FeSiO4 as Potential Li-Battery Cathode Materials,” Electrochemistry Communications, vol. 8, pp. 217–222, 2006
[20] R.K.B. Gover, P. Burns, A. Bryan, M.Y. Saidi, J.L. Swoyer, J. Barker, “LiVPO4F: A new active material for safe lithium-ion batteries,” Solid State Ionics, vol. 177, pp. 2635–2638,2006
[21] V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La Salle, A. Verbaere, D. Guyomard, Y. Piffard,”LiMBO3 (M=Mn,Fe,Co) synthesis, crystal structure and lithium deinsertion / intertion properties, ” Solid State Ionics, vol. 139, pp. 37–46, 2001
[22] 張洪斌,曾樂才,廖文俊,楊霖霖,"鋰電池產業概況及其在儲能中的應用", 裝備機械,vol.1, pp. 38-44, 2012
[23] D. Aurbach, E. Levi, M. D. Levi, G. Salitra, B. Markovsky, K. Gamolsky, R. Oesten, U. Heider and L. Heider, “Electrochemical and in-situ XRD characterization of LiNiO2 and LiCo0.2Ni0.8O2 electrodes for rechargeable lithium cells,” Solid State Ionics, vol. 126, pp. 97-108, 1999
[24] A. R. Kamali and D. J. Fray, “Review on carbon and silicon based materials as anode materials for lithium ion batteries,” Journal of New Materials for Electrochemical Systems, vol. 13, pp. 147-160, 2010
[25] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, “LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density,” Materials Research Bulletin, vol. 15, pp. 783–789, 1980
[26] 吳宇平,戴曉兵,馬軍旗,程預江。鋰離子電池——應用與實踐。北京: 化學工業出版社,2004
[27] L.D. Dyer, B.S. Borie and G.P. Smith, “Alkaki Metal-nickel Oxides of the Type MNiO2,” Journal of the American Chemical Society, vol. 78, pp. 1499-1503, 1954
[28] D. Aurbach, M.D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L.Heider, R. Oesten, “Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques,” Journal of Power Sources, vol. 81, pp. 472–479, 1999
[29] Y.Y. Xia, Y.H. Zhou, M. Yoshio, “CAPACITY FADING ON CYCLING OF 4 V LI LIMN2O4 CELLS,“ Journal of the Electrochemical Society, vol. 144, pp. 2593–2600, 1997
[30] Y.J. Shin, A. Manthiram, “Factors influencing the capacity fade of spinel lithium manganese oxides,” Journal of the Electrochemical Society, vol. 151, pp. A204–A208, 2004
[31] J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, “Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332,” Chemistry of Materials, vol. 16, pp. 906–914, 2004
[32] Z. H. Lu, J. R. Dahn,” Understanding the anomalous capacity of Li/Li[NixLi1/3-2x/3Mn2/3-x/3]O2 cells using in situ X-ray diffraction and electrochemical studies,” Journal of the Electrochemical Society, vol. 149, pp. A815−A822, 2002
[33] 王綏軍,趙煜娟,趙春松,夏定國,”鋰離子電池富鋰正極材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (x=1/5, 1/4, 1/3)的合成及電化學性能",高等學校化學學報(Chem. J. Chinese U.),vol. 30, pp. 2358−2362, 2010
[34] D. K. Lee, S. H. Park, K.Amine, ” High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method,” Journal of Power Sources, vol. 162, pp.1346−1350, 2006
[35] M. Tabuchi , Y. Nabeshima, K. Ado, “Material design concept for Fe-substituted Li2MnO3-based positive electrodes,” Journal of Power Sources, vol. 174, pp. 554−559, 2007
[36] J. H. Kim, C.W. Park, Y. K. Sun,” Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials,” Solid State Ionics, vol. 164, pp. 43-49, 2003
[37] J. M. Kim, S. Tsuruta, N. Kumagai,” Electrochemcial properties of Li[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2(0≤x≤1) solid solutions prepared by poly-vinyl alcohol(PVA) method,” Electrochemistry Communications, vol. 9, pp. 103-108, 2007
[38] A. Tang , K. Huang. “Structure and electrochemical properties of Li1+yNi0.5AlxMn0.5−xO2synthesized by a new Sol-Gel method,” Materials Chemistry and Physics, vol. 93, pp. 6-9, 2005
[39] K. Numata, C. Sakaki, S. Yamanaka,” Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3,” Solid State Ionics, vol. 117, pp. 257-263, 1999
[40] X. K. Huang, Q. S. Zhang, H.T. Chang, ” Hydrothermal synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances,” Journal of The Electrochemical Society, vol. 156, pp. A162−A168, 2009
[41] Y. J. Lee, M. G. Kim, J. Cho,” Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material,” Nano Letters, vol. 8, pp. 957-961, 2008
[42] M. G. Kim, M. Jo, Y. S. Hong,”Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode,” Chemical Communications, vol. 2, pp. 218-220, 2009
[43] Y. C. Sun, Y. G. Xia, H. Noguchi, “ The preparation and electrochemical performance of solid solutions LiCoO2-Li2MnO3 as cathode materials for lithium ion batteries,” Journal of Power Sources, vol. 159, pp. 1353-1359, 2006
[44] Y. J. Kim, Y. S. Hong, M. G. Kim, “Li0.93 [Li0.21Co0.28Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite,” Electrochemistry Communications, vol. 9, pp.1041-1046, 2007
[45] 蘇繼桃,蘇玉長,賴智廣,”製備鎳、鈷、錳複合氫氧化物的熱力學分析,”電池工業, vol.13, pp.18-22, 2008
[46] 鄭建明,吳曉彪,楊勇,”富鋰鄭及材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2的合成優化及表徵,”電源技術,vol. 35, pp.1188-1192,2011
[47] 王昭,吳鋒,蘇岳鋒,包麗穎,陳來,李寧,陳實,”鋰離子電池正極材料 xLi2MnO3.(1-x)Li[Ni1/3Mn1/3Co1/3]O2的製備及表徵,”物理化學學報 ,vol. 28,pp.823-830, 2012
[48] H. Koga, L. Croguennec, P. Mannessiez, M. Ménétrier, F. Weill,L. Bourgeois, M. Duttine, E. Suard and C. Delmas,” Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium‑Ion Batteries Insights Into Their Structure,” Journal of Physical Chemistry C, vol.116, pp.13497-13506, 2012
[49] 趙煜娟,馮海蘭,趙春松,孫召琴,”鋰離子電池富鋰正極材料xLi2MnO3•(1−x)LiMO2 (M=Co, Fe, Ni1/2Mn1/2…)的研究進展,”無機材料學報 ,vol. 26, pp. 673-679, 2011
[50] A. Ito, D. Li, Y. Sato, M.Arao, M. Watanabe,M. Hatano, H. Horie, Y. Ohsawa,” Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2,” Journal of Power Sources, vol. 195, pp. 567–573, 2010
[51] M. M. Thackeray, S.-H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek and S. A. Hackney, “Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries,” Journal of Materials Chemistry, vol. 17, pp. 3112-3125, 2007
[52] G. Singh, R. Thomas, A. Kumar, R. S. Katiyar and A. Manivannan, ” Electrochemical and Structural Investigations on ZnO Treated 0.5 Li2MnO3-0.5LiMn0.5Ni0.5O2 Layered Composite Cathode Material for Lithium Ion Battery,” Journal of The Electrochemical Society, vol. 159, pp. A470-A478, 2012
[53] Y. Wu and A. Manthiram, “Effect of Surface Modifications on the Layered Solid Solution Cathodes (1-z) Li[Li1/3Mn2/3]O2 – (z) Li[Mn0.5-yNi0.5-yCo2y]O2,” Solid State Ionics, vol. 180, pp. 50-56,2009
[54] Y.J. Zhao, C.S. Zhao, H. L. Feng, Z.Q. Sun and D.G. Xia, “Enhanced Electrochemical Performance of Li[Li0.2Ni0.2Mn0.6]O2 Modified by Manganese Oxide Coating for Lithium-Ion Batteries,” Electrochemical and Solid-State Letters, vol. 14, pp. A1-A5, 2011
[55] S.-H. Kang , M. M. Thackeray, “Enhancing the rate capability of high capacity xLi2MnO3 - (1-x)LiMO2 (M = Mn,Ni, Co) electrodes by Li–Ni–PO4 treatment,” Electrochemistry Communications, vol. 11, pp. 748–75, 2009
[56] B. Liu, Q. Zhang, S.C. He, Y. Sato, J. W. Zheng, D.C. Li, “Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4,” Electrochimica Acta, vol. 56, pp. 6748– 6751, 2011
[57] 吳曉彪,董志鑫,鄭建明,楊勇,”鋰離子電池正極材料Li[ Li 0. 2Mn 0. 54 Ni 0. 13 Co 0. 13 ]O2的碳包覆研究,”廈門大學學報,vol. 47, pp. 224-227, 2008
[58] D. Y. W. Yu, K. Yanagida and H. Nakamura, “Surface Modification of Li-Excess Mn-based Cathode Materials,” Journal of The Electrochemical Society, vol. 157, pp. A1177-A1182, 2010
[59] C. S. Johnson, N. Li, C. Lefief, J. T. Vaughey and M. M. Thackeray, “Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3 • (1 - x)LiMn0.333Ni0.333Co0.333O2 (0 ≦ x ≦0.7),” Chemistry of Materials, vol. 20, pp. 6095-6106, 2008
[60] M. H. Rossouw, M. M. Thackeray, “Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications,” Materials Research Bulletin, vol. 26, pp. 463-473, 1991
[61] S. H. Park, Y. K. Sun, “Synthesis and electrochemical properties of layered Li[Li0.25Ni(0.275−x/2)AlxMn(0.575−x/2)]O2 materials prepared by Sol-Gel method,” Journal of Power Sources, vol. 119-121, pp. 161-165, 2003
[62] L. F. Jiao, M. Zhang, H. T. Yuan,” Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]Ox (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries,” Journal of Power Sources, vol. 167, pp. 178-184, 2007
[63] D. Kim, J. Gim, J. Lim, S. Park, J. Kim, “Synthesis of xLi2MnO3_(1 _ x)LiMO2 (M = Cr, Mn, Co, Ni) nanocomposites and their electrochemical properties,” Materials Research Bulletin, vol. 45, pp. 252–255, 2010
[64] S.J. Shi, J.P. Tu, Y.J. Mai, Y.Q. Zhang, C.D. Gu, X.L. Wang, “Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries,” Electrochimica Acta, vol. 63, pp. 112-117, 2012
[65] 王英平,王先友,隗小山,魏啟亮,楊秀康,楊順毅,舒洪波,白艷松,無強,”以Mn3O4為前驅體製備LiMn2O4及其性能,”中國有色金屬學報,vol.22, pp. 567-573, 2010
[66] S. T. Myung, N. Kumagai, S. Komaba, H. T. Chung, “Effects of Al doping on the microstructure of LiCoO2 cathode materials,” Solid State Ionics, vol. 139, pp. 47- 56, 2001
[67] Y. Kim, H. S. Kim, S. W. Martin, “Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries,” Electrochimica Acta, vol. 52, pp. 1316-1322, 2006
[68] http://srdata.nist.gov/xps/
[69] A.R.Armstrong and P.G.Bruce, “Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries,” Nature, vol. 381, pp. 499-500, 1996
[70] 范廣新,曾躍武,陳榮升,呂光烈,”正交層狀LiMnO2在電化學循環過程中的相變和活化特性,” 無機化學學報,vol. 24, pp. 944-949, 2008
[71] Y. M. Chiag, H. Wang, Y.I. Jang, “Electrochemically Induced Cation Disorder and Phase Transformations in Lithium Intercalation Oxides, vol. 13, pp. 53-63, 2001
[72] J.M. Paulsen, J.R. Dahn, “Phase Diagram of Li-Mn-O Spinel in Air,” Chemistry of Materials, vol.11, pp. 3065-79,1999