簡易檢索 / 詳目顯示

研究生: 呂秉翰
Ping-Hang Lu
論文名稱: 應用分子動力學模擬不同加工條件下於射出成型充填系統之奈米微觀流體行為
Molecular Dynamics Simulation of Injection Molding Filling System on Nano-Scale Flow
指導教授: 張榮語
Rong-Yeu Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 141
中文關鍵詞: 分子動力學模擬聚乙烯玻璃轉化溫度奈米尺度射出成型充填過程
外文關鍵詞: Molecular dynamics simulation, Polyethlene, Glass transition temperature, Nano scale, Injection molding, Molding filling process
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用分子動力學模擬聚乙烯在奈米尺度下射出成型之充填過程。首先以分子動力學模擬高分子之玻璃轉化溫度,並且與文獻作驗證。第二階段模擬高分子在射出成型系統中之充填過程,以預測高分子在奈米尺度之射出成型加工過程之流變現象。
    (一) 玻璃轉化溫度:使用分子動力學模擬不同鏈長的高分子玻璃轉化溫度,模擬的鏈長分別為100、200、400及800,並探討隨著鏈長改變,玻璃轉化溫度的變化情形,此外並討論在相同鏈長下,而不同的系統壓力下,玻璃轉化溫度隨著壓力的變化情形。
    (二) 非穩態射出充填過程:將高分子置入系統之中進行加工模擬,探討在奈米尺度下充填過程中高分子的各項性質隨著時間的變化。接著更進一步探討分別以高分子鏈長、金屬與高分子間的作用力、金屬基材、加工速度和加工溫度為變因對充填過程所造成的影響。由模擬結果可知,隨著鏈長的增加,導致系統流速較慢且充填密度較不均勻。而金屬與流體作用力愈大時,在模穴前方壁面的z方向順向性也變大,造成物件在成型後產生翹曲變形的機率昇高。而為了驗證金原子在模擬上的客觀性,當改用硬度較為接近微射出成型機之內部材質的白金基材來模擬時,發現與金原子模擬的結果幾乎毫無差異。另外,加工速度過大時,須要回收再利用的塑料增多,且充填效果較差,模穴內密度較不均勻。當溫度愈高時,高分子流動性較佳,利於加工,且模穴內的充填較為均勻。


    In this research, molecular dynamics simulation is adopted to simulate the glass transition temperature of polyethlene and the molding filling in nano-injection molding process. Our work divided into two parts is as follows.
    I. Glass transition temperature:Molecular dynamics is adopted to simulate the glass transition temperature of polymer at different chain lengths, and the chain lengths are 100,200,400 and 800, respectively. The purpose of the simulation is to explore not only the relation between the chain length and the glass transition temperature of polymer, but also the relation between the pressure and the glass transition temperature of polymer at the same chain length.
    II. Unsteady nano injection molding:With increasing chain length, the density of local system gets more uniform.The probability of warpage becomes great with increasing the interaction between metal particle and polymer particle. Besides, the simulation results between Pt and Au are almost the same. However, if the injection velocity is too large, more plastics will be wasted and the filling quality is relatively bad. Finally, when the temperature is on the increase, the polymer gets easier to be processed and the density in the mold gets more uniform.

    中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 符號說明 XII 第一章、緒論 1 1.1研究目的與動機 1 1.2分子動力學模擬引論 2 1.2.1 分子動力學方法介紹 2 1.2.2 分子動力學模擬之優點 2 1.2.3 分子動力學目前之應用 3 1.3微射出成型引論 5 1.3.1 射出成型簡介 5 1.3.2 微射出成型簡介 6 1.3.3 微射出成型關鍵技術 7 1.3.4 塑膠微射出成型品之應用 11 1.4微流體引論 12 1.4.1 微流體與巨觀之差異 12 1.4.2 微流體之應用 14 1.5玻璃轉化溫度引論 16 1.5.1玻璃轉化溫度定義 16 1.5.2引響玻璃轉化溫度之因素 16 第二章、文獻回顧 18 2.1微射出成型文獻回顧 18 2.2分子動力學文獻回顧 26 2.2.1 玻璃轉化溫度模擬文獻回顧 26 2.2.2 高分子於奈米流場中模擬文獻回顧 29 第三章、研究方法 34 3.1分子動力學基本理論 34 3.1.1 分子動力學基本假設 34 3.1.2 分子動力學基本架構 35 3.1.3 分子動力學初始條件 35 3.1.4 運動行為的預測 37 3.1.5 系統的控制 39 3.1.5.1 系統粒子數的恆定 40 3.1.5.2 系統溫度的恆定 43 3.1.6 物理性質的計算 44 3.2加速分子動力學模擬方法 49 3.2.1 分子勢能截斷法(Cutoff Distance) 49 3.2.2 Verlet 鄰近列表法(Neighbor List) 50 3.2.3 Cell-Linking 列表法 51 3.3分子勢能模型 53 3.3.1 Lennard-Jones Potential 53 3.3.2 Dreiding potential 55 第四章、模擬系統與數值方法 57 4.1玻璃轉化溫度模擬系統 57 4.2非穩態射出成型模擬系統 60 4.2.1 射出成型系統幾何形狀介紹 60 4.2.2 射出成型系統模擬方法說明 62 第五章、結果與討論 64 5.1 聚乙烯玻璃轉化溫度計算 64 5.2 奈米射出充填系統之研究 72 5.2.1 奈米射出充填過程模擬 73 5.2.2 不同鏈長高分子奈米射出充填過程模擬 89 5.2.3 不同金屬作用力奈米射出充填過程模擬 101 5.2.4 不同金屬基材之奈米射出充填過程模擬 110 5.2.5 不同加工溫度之奈米射出充填過程模擬 117 5.2.6 不同加工速度之奈米射出充填過程模擬 126 第六章、結論與未來展望 134 參考文獻 137 Appendix A 減縮單位轉換 141

    1. C.I.Chen,"The Analysis of Technology Development and Application Market for Precision Micro Mold & Die",機械工業,2007年1月, pp.71-80
    2. 曾世昌 "微射出成型技術於微機電系統之應用與研究",國科會研究報告成果,1997年7月
    3. J.M. Haile "Molecular Dynamics Simulation: Elementary Methods", Wiley Professional Paperback Edition Published ,1997
    4. M.P. Allen, J.P. Tildesley "Computer simulation of Liquids",Oxford Science Publications ,1987.
    5. Richard J. Sadus. "Molecular Simulatin of Fluids: Theory, Algorithms and Object-Orientation" ,New York, Elsevier, 1999.
    6. D.C. Rapaport, "The Art of Molecular Dynamics Simulation", Cambridge University Press, 1995.
    7. David A.C. Beck and Valerie Daggett, "Methods for molecular dynamics simulations of protein folding/unfolding in solution", Methods vol.34 (2004), pp.112–120.
    8. Jie Han, Al Globus, Richard Jaffe and Glenn Deardorff, “Molecular dynamics simulations of carbon nanotube-based gears”, vol.8 (1997), pp.95-102.
    9. R. E. Tuzun, D. W. Noid, B. G. sumpter, R. C. Merkle, "Dynamics of fluid flow inside carbon nanotubes" ,Nanotechnology, vol.7(1996), pp.241-246.
    10. 張榮語 "射出成型模具設計-模具設計",高立圖書有限公司 民國90年版
    11. 陳夏宗 "微米模具與微射出成型技術簡介",化工技術,2004年1月,p119-127
    12. 施希弦 "高分子微小射出成型技術現況",化工技術,2004年1月,p129-137
    13. 鍾享年 "微射出成型技術探討",機械月刊,2005年6月,p16-20
    14. "TR18 S3A" , 日本Sodick 公司射出成型機型錄 , www.sodickimm.com.
    15. Fatikow, Rembold, "微機電概論", 高立圖書有限公司 民國89年版
    16. M. Gad-El-Hak, "The MEMS Handbook", CRC Press, 2001.
    17. Gavin J.C. Braithwaite and Gareth H. McKinley"Microrheometry for Studying the Rheology and Dynamics of Polymer near Interface" Journal of Applied Rheology vol.9 (1999), pp27-33.
    18. G.E. Karniadakis, A. Beskok, "Micro Flow: Fundamentals and Simulation", Springer, 2001.
    19. Chih-Ming Ho, Yu-Chong Tai. "Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows", Annu. Rev. Fluid Mech.vol.30 (1998), pp579-612.
    20. 楊啟榮 "微系統LIGA製程技術",科儀新知,vol.19(1998) , pp.4-17。
    21. 楊啟榮,強玲英,黃奇聲 "微系統LIGA製程之精密電鑄技術",科儀新知 vol.21(2000), pp.15-26。
    22. 張榮語 "射出成型模具設計-材料特性",高立圖書有限公司 民國87年版
    23. C. Kukla, H.Loibl, H.Detter, "Micro Injection molding - the aims of a project partnership",Kunststoff plastic Europe,(1998),pp1331-1336
    24. H. Eberle, "Micro Injection molding - Mould Technolody", Kunststoff plastic Europe,(1998),pp1344-1346
    25. Heckele, M., etal. , “Hot embossing - The Molding Technique for Plastic Microstructures,” Microsystem Technologies, vol.4(1998),pp.122.
    26. M. Niggemann, "Miniacturized plastic micro plates for applications in HTS", Microsystem Technologies, vol.6(1999),pp.48-53.
    27. Oliver Kenmann, "Simulation of the Injection Molding Process", SPE Antec Tech papers, (2000).
    28. W. Michaeli, etl. "New plastification concepts for injection moulding", Microsystem Technologies, vol.8(2002),pp.55-57.
    29. Joon-Shik Park "Acoustic and electromechanical properties of 1-3 PZT composites for ultrasonic transducer arrays fabricated by sacrificial micro PMMA mold ", Sensors and actuators A,vol.108(2003),pp206-111
    30. Yu-Chuan Su, "Implementation and analysis of polymeric microstructure replication by micro injection molding",Journal of micromechanics and microengineering, vol.14(2004),pp415-422.
    31. G. Fu, " Replication of metal microstructure by micro powder injection molding ", Materials and design, vol.25(2004),pp729-733.
    32. Rudolf Zauner, "Micro powder injection moulding", Microelectronic engineering, vol.83(2006),pp1442-1444.
    33. J. Han, R. H. Gee, R. H. Boyd, “Glass Transition Temperature of Polymers from Molecular Dynamics Simulations”,Macromolecules, vol.27(1994), pp.7781-7784
    34. L. Yang, D. J. Srolovitz, A. F. Yee, “Molecular dynamics study of isobaric and isochoric glass transitions in a model amorphous polymer”, J. Chem. Phys., vol.110(1999), pp.7058-7069
    35. Kun-qain Yu, "Polymer Structure and Glass Transition: A Molecular Dynamics Simulation Study", Macromolecular Theory and Simulations, vol.10(2001), pp.624-633.
    36. Rong-Yeu Chang, Chi-Fu Dai, “ Conformational dynamics and entanglement phenomenon of polymer chains during glass transition ” , pp1659-1663, Annual Technical Conference Proceedings, SPE Antec 2006, Charlotte, North Carolina, May 7-11, 2006(USA)
    37. J. Koplik, J.R. Banavar, J.F. Willemsen "Molecular Dynamics of Poiseuile Flow and Moving Contact Lines", Physical Review Letters, vol.60(1988), pp.1282-1285.
    38. J Koplik, J.R. Banavar, J.F. Willemsen, "Molecular Dynamics of Fluid Flow at Solid Surface", Phys. Fluids A , vol.1(1989), pp.781-794.
    39. M. Moseler, U. Landman, "Formation, Stability, and Breakup of Nanojets", Science, vol.289(2000), pp.1165-1169.
    40. X.J. Fan, N. Phan-Thien, N.T. Yong ,X. Diao, "Molecular Dynamics Simulation of A Liquid in A Complex Nano Channel Flow", Physical of Fluid, vol.14 (2002), pp.1146-1153.
    41. G. Nagayama, P. Cheng, "Effects of interface wettability on microscale flow by molecular dynamics simulation", International Journal of Heat and Mass Transfer, vol.47(2004), pp.501-513.
    42. 卓志哲,"奈米噴流之分子動力學模擬",碩士論文,國立清華大學,2003
    43. Rong-Yeu Chang, Jenn-Jye Wang, “Molecular Dynamics Simulation of Nano-Scale Polymeric Rheological Properties and Extrusion Flows”, pp.3303-3306, vol.3, ANTEC 2004, SPE’s 62th Annual Technical Conference, Chicago, U.S.A., 2004
    44. Te-Hua Fang,Win-Jin Chang, Shi-Cheng Liaoa , "Effects of temperature and aperture size on nanojet ejection process by molecular dynamics simulation", Microelectronics Journal, vol.35(2004), pp.687–691.
    45. Tao Dong, " Molecular simulations of R141b boiling flow in micro/nano channel: Interfacial Phenomena ", Energy conversion and Management , vol.47(2006), pp.2178–2191.
    46. 王唯讚,"以分子動力學模擬奈米尺度下射出成型之充填過程",碩士論文,國立清華大學,2006
    47. Huan-Chuang Tseng, Jiann-Shing Wu, Rong-Yeu Chang, , “Application of Parallel Computing on Die Swell of Nano-scale Polymer Extrusion”, pp2325-2329, Annual Technical Conference Proceedings, SPE Antec 2006, Charlotte, North Carolina, May 7-11, 2006(USA)
    48. W.G.. Hoover, "Canonical dynamics: Equilibrium phase-space distributions", Physical Review A, vol.31(1985), pp.1695-1697.
    49. W. Mattson, B. M. Rice, “Near-neighbor calculations using a modified cell-linked list method”, Computer Physics Communications, vol.119(1999), pp.135-148
    50. T. K. Xia, J. Ouyang, M. W. Ribarsky, U. Landman, " Interfacial Alkane Films", Physical Review Letters, vol.69(1992), pp.1967-1970
    51. Yin Chen, Daoyang Huang, A. Kristen, " A molecular dynamics simulation study of the adsorption and diffustion dynamics of short n-alkanes on Pt(111)", Journal of Chemical Physics, vol.101(1994), pp.11021-11030

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE