研究生: |
陳宗孟 Chen, Tsung-Meng |
---|---|
論文名稱: |
人工膝關節脛骨連接面之新設計 New Design for Tibial-Implant Interface in Total Knee Arthroplasty |
指導教授: | 蕭德瑛 |
口試委員: |
蕭德瑛
鄭璧瑩 王子康 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 人工膝關節 、再置換 、連接面 、凹凸面之接合 、力學測試 |
外文關鍵詞: | total knee arthroplasty (TKA), Revision TKR, bone implant interface, plug-in, mechanical testing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人工關節的發明被稱為近代醫療界三大重要發明之一,其重要性也僅次於抗生素。在各種人工關節手術中,又以人工膝關節之技術與效果最為成熟,的設計也日趨穩定,往往可用20年左右。中央健康保險局統計在民國98至100年間,台灣全年之全人工膝關節置換約為兩萬例;而加上平均壽命逐年上升,人工膝關節因超過年限而需要再置換的個案也逐年增加,每年約有一千例以上的病患需要再置換。
為達到快速接合脛骨與人工關節之間之接面,目前都使用骨水泥(PMMA)於兩者之連接面,黏合效果非常良好。但也因此造成再置換手術時清除骨水泥及拔除原人工關節困難重重,讓骨科醫師在進行此手術時非常費時,且清除骨水泥時,連帶犠牲相當多的有用的鬆質骨及硬質骨,這樣的流失又更增加病人身體上的消耗。
本研究為減少上述接合面分離的困難,將設計新的接面機構及結構以減少清除骨水泥時之正常骨骼之犠牲,而又兼顧到新接合面骨切面與人工關節之穩定度,結合機構將採相互凹凸面之接合,並集中於週邊之硬質骨上,骨水泥亦集中於週邊。此一設計之假設,在於多個凹凸面所提供之接合力,可與目前之多面接觸作穩定度之比較,並增添二次置換手術時的便利性。
在此研究中,先以繪圖軟體Solidwork和模擬軟體ANSYS來分析舊式人工關節受壓應力時,應力集中位置,從分析證實主要應力多半集中於硬質骨上,與鬆質骨關聯性較低;證實理論後,設計新式人工關節,並以豬骨實驗模組作出力學測試,以取得新設計之接合面穩定度;在此研究中,設置四組置換上新式關節的豬骨模組,進行拉伸試驗,從拉伸實驗結果可得知,硬質骨與骨水泥接合處會承受最大拉力,四個模組於周邊硬質骨-骨水泥間分別承受278.6694 (N)、245.2942 (N)、193.9125 (N)的力,可判斷出硬質骨與骨水泥間可承受拉力約略為其平均的240(N),而有梯形結構支撐下的模組四為564.5449(N);再就過去未貼合周邊硬質骨而以梯形結構作支撐的模組來看,脛骨梯形凹槽與骨水泥間承受約略810(N)的力,由此可知梯形結構的重要性。且於二次置換時,新式關節可運用骨水泥不抗剪力的特性快速移除關節,以提升置換方便性,並達到本研究設計目的。
Arthroplasty possibly is one of the three most important inventions in last few decades, and just behind antibiotics for its contributions. In various types of arthroplasties, total knee arthroplasty (TKA) is the most established and reliable procedure. The survivorship can last for up to 20 years. In 2009-2011, there were about twenty thousand TKA performed in Taiwan. Along with progressively lengthen life expectancy, Number of revision of TKR increases annually and there are almost one thousand cases per year.
Application of bone cement (PMMA) achieves a faster and better bone implant interface in TKA especially in tibial component. In the other hand, this secured fixed implant caused troublesome in removal of bone implant during revision TKA surgery. Orthopedic surgeons always find difficulties in removing bone cement between bone and implant. It also found that massive trabecular and cortical bone are sacrificed.
In this study, for decreasing the degree of difficulty in separation of implant from bony component, a new locking mechanism and implant structure are designed to avoid unnecessary bone loss. The locking mechanism based on plug-in surface in the rim of tibial cutting surface and sit on the peripheral strong cortical bone. The multiple plug-in locations showed provide enough combination forces and should be comparable with present stability design.
In our experiment, we use Solidwork and ANSYS to analysis the position of stress concentration. The result shows that stress concentrates on cortical bone rather than cancellous bone. We design a new total knee arthroplasty and made several tensile test. Testing models about tensile forces of the Instron device were obtained in mechanical testing. In this research, we set four pig-knee models which are placed on new type artificial knee joint and have tensile test. Results showed that the maximum fracture force for three of all models happened on the interface between rim of the cortical bone and bone cement. The magnitudes are 278.6694 (N), 245.2942 (N) and 193.9125 (N). The last set had support by trapezoid-shape structure, so its magnitude is 564.5499(N). In terms of the model which doesn’t fit between rim of the cortical bone and bone cement, the force between trapezoid-shape fillister and bone cement is about 810(N). Those data could show the importance of the trapezoid-shape structure. For TKA revision, new design arthroplasty take advantage of the weakness of the bone cement which hardly bearing the shear force to remove arthroplasty rapidly. It also improved the convenience of Revision and achieved the purpose of this research.
[1] 人工膝關節的使用年限,高雄醫學大學附設中和紀念醫院 骨科部 關節重建科 蘇景源 主任,102年8月
[2] Callaghan JJ, O'rourke MR, Saleh KJ: Why knees fail: lessons learned. Journal of Arthroplasty 19(4 Suppl 1):31, 2004
[3] Turgay Efe1,2*, Jens Figiel1, David Sibbert1, Susanne Fuchs-Winkelmann1, Carsten O Tibesku3, Nina Timmesfeld4, Jurgen RJR Paletta1, Adrian Skwara1,Revision of tibial TKA components: bone loss is independent of cementing type and technique: an in vitro cadaver study
[4] Shiers, L.G.P., “Arthroplasty of the knee. A preliminary report of a new method.,” J Bone Joint Surg, [Br] 36:553-560, 1954.
[5] Walker, P.S., “Knee Prosthesis”, United States Patent, 3837009, Sept. 24, 1974.
[6] Albrektsson, B., and Rodhakevagen, L., “Artificial Menisco-Tibial Joint,” United States Patent, 4728332, Mar. 1, 1988.
[7] Forte, M.R., Nolles, D.G., “Knee and Patellar Prosthesis,” United States Patent, 4888021, Dec. 19, 1989.
[8] Walker, P.S., and Sathasivam, S., “The design of guide surface for fixed-bearing and mobile-bearing knee replacements”, Journal of Biomechanics, final from 23, 27-34, 1999.
[9] Walker, P.S., and Sathasivam, S., “The conflicting requirements of laxity and conformityin total knee replacement”, Journal of Biomechanics 32 (1999) 239-247
[10] Albert Burdulis, Wolfgang Fitz, Rene Vargas-Voracek,Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
[11] Christel M. Wagner, Joseph G. Wyss, David S. Barrett, Femoral component of a knee prosthesis having an angled cement pocket
[12] 高逢辰,“具有切面調整功能之人工關節置換手術用器具”,中華民國專利,2010.
[13] 蔡清霖、龍震宇、陸正光,“人工關節定位輔助器”,中華民國專利,2005.
[14] 陸正光,“人工膝關節之改良構造”,中華民國專利,2004.
[15] 魏田和,“人工膝關節之測試器構造”,中華民國專利,2004.
[16] 劉華昌、徐業良、呂東武、尹居中,“人工膝關節機構改良”,中華民國專利,2003.
[17] 于載九、龍震宇、陸正光,“人工膝關節結構改良”,中華民國專利,2000.
[18] 黃俊雄、于載九、何為斌、鄭誠功、龍震宇、賴文輝、陸正光,“人工膝關節總成”,中華民國專利,1998.
[19] 楊榮森、龍震宇、魏子強,“定製式人工關節之模組式結合裝置”,中華民國專利,1997.
[20] 行政院國軍退除役官兵輔導委員會榮民總醫院傷殘重建中心,“四柱式膝關節”,中華民國專利,1998.
[21] 廖振焜、楊榮森、侯勝茂、吳岱穎,“磁浮人工關節”,中華民國專利,2011.
[22] 楊學成,“人工關節結構”,中華民國專利,2009.
[23] 林上智、王文騰、吳昇財、廖翊棨,“微骨切量且表面置換型人工關節的製作方法及置換器具”,中華民國專利,2009.
[24] Hans Naegerl, "Artificial joint and a joint part intended for this purpose", United States Patent, 2009.
[25] Derek James Wallace McMinn, "Knee prostheses", United States Patent, 2010.
[26] Damon Servidio, "Knee prosthesis with four degrees freedom", United States Patent, 2011.
[27] Josef Grafinger, "Knee joint prosthesis", United States Patent, 2009.
[28] Binyamin Hajaj, Jason K. Otto, Rony Abovitz, Steven B. Brown, Scott Banks, Scott Banks, Benjamin J. Fregly, Dana C. Mears, "Prosthetic device and system and method for implanting prosthetic device", United States Patent, 2008.
[29] Barry M. Fell, Richard H. Hallock, "Surgically Implantable Knee Prosthesis", United States Patent, 2008.
[30] Arnold Keller, "Knee prosthesis", United States Patent, 2007.
[31] Amiram Steinberg, "Knee prosthesis having a deformable articulation surface", United States Patent, 2010.
[32] John P. Bernero, Ashok C. Khandkar, Ramaswamy Lakahminarayanan, Aaron A. Hofmann, "Knee prosthesis with ceramic tibial component", United States Patent, 2010.
[33] Erin M. Johnson, Joseph Saladino, "Modular knee prosthesis", United States Patent, 2004.
[34] Kristen L. Romeis, Matthew D. Smith, Allan Ritchie, "Hinged orthopaedic prosthesis", United States Patent, 2011.
[35] Arnold Keller, "Knee prosthesis with rotation bearing", United States Patent, 2004.
[36] Bartel, D. L., Bickhell, V.L. and Wright, T.M., 1986. The effect of conformity, thickness and material on stress in ultra-high molecular weight component for total joint replacement. J. Bone J. Surg. 68(A), 1041-1051.
[37] Bartel,D.L., Rawlinson, J.J., Burstein,A.H.,Ranawat,C.S. and Flynn, W.F., Jr.,1995. Stresses in polyethylene components of contemporary total knee replacements. Clinical Orthopaedics & Related Research. 76-82.
[38] R. L. Rakotomanana, P. F. Leyvraz, A. Curnier, J. H. Heegaard* and P. J. Rubin*, A finite element model for evaluation of tibial prosthesis-bone interface in total knee replacement, Journal of Biomechanics Volume 25, Issue 12, December 1992, Pages 1413–1424
[39] Martin H. Stone, Rosemary Wilkinson, Ian G. Stother, 1989, Some factors affecting the strength of the cement-metal interface, Journal of Bone & Joint Surgery, vol. 71-B no. 2, Pages 217-221
[40] Gavin T. Pittman, MD,*† Christopher L. Peters, MD,*† Jerod L. Hines, MNS,‡ and Kent N. Bachus, PhD*‡†, 2006, Mechanical Bond Strength of the Cement–Tibial Component Interface in Total Knee Arthroplasty, The Journal of Arthroplasty, Volume 21, Issue 6, Pages 883–888
[41] Kenneth A. Mann1, Mark A. Miller1, Richard J. Cleary2, Dennis Janssen1, and Nico Verdonschot3, 2008, Experimental Micromechanics of the Cement–Bone Interface, Journal of Orthopaedic Research, Volume 26, Issue 6, Pages 872-879
[42] Dennis Janssen a,b,*, Kenneth A. Mann b, Nico Verdonschot a,c ,2008 , Micro-mechanical modeling of the cement–bone, Journal of Biomechanics, 41(15), Pages 3158–3163.
[43] 黃昌弘,後方穩定型人工膝關節之機構特徵對於應力分佈的影響,博士論文,國立陽明大學醫學工程研究所,2006
[44] 林柏霖,不良骨切時人工膝關節髕骨之接觸應力分析研究,碩士論文,國立台北科技大學自動化科技研究所,2005
[45] 李國宏,脛骨近端幾何形態分析於再置換脛骨元件的設計研究,碩士論文,國立陽明大學醫學工程研究所,2006
[46] 李根榮,正常及人工膝關節運動學模型之建立與分析,碩士論文,國立陽明大學醫學工程研究所,2007
[47] 楊溢榮,全人工膝關節髕骨元件取出物磨耗分析,碩士論文,國立陽明大學醫學工程研究所,2004
[48] 于振東,高彎曲型全人工膝關節之動作分析,碩士論文,中國醫藥學院醫學研究所,2003
[49] 簡瑞宏,四連桿人工膝關節之機構設計與合成,碩士論文,國立台灣大學機械工程研究所,2003
[50] 黃建偉,全人工膝關節髕股骨關節元件不當對位之接觸特性分析,碩士論文,國立陽明大學醫學工程研究所,2002
[51] 康莊敬,定位及超高分子量聚乙烯層厚度對全人工膝關節置換術之生物力學探討,碩士論文,國立成功大學醫學工程研究所,2002
[52] 尹居中,新型人工全膝關節之設計,碩士論文,元智大學機械工程研究所,2001
[53] 黃昌弘,固定式與轉動式脛骨元件人工膝關節之應力分析,碩士論文,國立陽明大學醫學工程研究所,2001
[54] 張廖美玲,國人膝關節之計測:遠端股骨、近端脛骨與髕骨之幾何變化及其在設計人工膝關節之應用,碩士論文,國立台灣大學醫學工程學研究所,2001
[55] 黎文龍,林柏霖,劉建緯,2004,人工膝關節髕骨之接觸應力研究,第四屆精密機械製造研討會,台灣
[56] 高德昌,以有限元素法分析功能性動作中人工全膝關節之生物力學,碩士論文,國立台灣大學醫學工程學研究所,2003
[57] 呂元喬,張志涵,逆行性骨隨內釘之生物力學分析,碩士論文,國立成功大學醫學工程研究所,2003
[58] S. Pickering, D. Armstrong, 2012, Focus On Alignment in Total Knee Replacement, Journal of Bone & Joint Surgery
[59] Vikas Karade1*, B Ravi1 and Manish Agarwal2, 2012, Extramedullary versus intramedullary tibial cutting guides in megaprosthetic total knee replacement, Journal of Orthopaedic Surgery and Research, 7:33
[60] Zimmer, Revision LCCK Instrumentation Surgical Technique for Legacy® Constrained Condylar Knee
[61] Ichiro Yoshii, Leo A. Whiteside, Michael T. Milliano, Stephen E. White,1992, The Effect of Central Stem and Stem Length on Micromovement of the Tibial Tray, The Journal of Arthroplasty, Suppl:433-8
[62] A. Completo a,*, J.A. Simões a, F. Fonseca b, M. Oliveira a, 2008, The influence of different tibial stem designs in load sharing and stability at the cement–bone interface in revision TKA, The Knee, Volume 15, Issue 3, Pages 227–232
[63] C. E. H. Scott, L. C. Biant, 2012, The role of the design of tibial components and stems in knee replacement, Journal of Bone & Joint Surgery, vol. 94-B no. , Pages 8 1009-1015
[64] Marko Veselinovic1, Nikola Vitkovic1, Dalibor Stevanovic1, Miroslav Trajanovic1, Stojanka Arsic2, Jelena Milovanovic1, Milos Stojkovic1, 2011, Study on Creating Human Tibia Geometrical Models, E-Health and Bioengineering Conference (EHB), pages 1-4, ISBN 978-1-4577-0292-1
[65] Animal models for implant biomaterial research in bone : A review, AI Pearce*, RG Richards, S Milz, E Schneider and SG Pearce, AO Research Institute, AO Foundation, Clavadelerstrasse 8, Davos, Switzerland European Cells and Materials Vol. 13. 2007(pages 1-10), ISSN 1473-2262
[66] Yuehuei H. An, Robert A. Draughn, 1999, Mechanical Testing of Bone and the Bone-Implant Interface, 648 Pages, CRC Press
[67] R.B. Ashman∗, ‡, J.Y. Rho∗, C.H. Turner†, 1989, Anatomical variation of orthotropic elastic moduli of the proximal human tibia, Journal of Biomechanics, Volume 22, Issues 8–9, Pages 895–900
[68] Jae Young Rho1, Richard B.Ashman and Charles H. Turner, 1993, Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements, Journal of Biomechanics, Volume 26, Issue 2, Pages 111–119
[69] Tsung-Wei Chang, Chan-Tsung Yang, Yu-Liang Liu, Wen-Chuan Chen, Kun-Jhih Lin, Yu-Shu Lai, Chang-Hung Huang, Yung-Chang Lu, Cheng-Kung Cheng, “Biomechanical evaluation of proximal tibial behavior following unicondylar knee arthroplasty: Modified resected surface with corresponding surgical technique”, Medical Engineering & Physics 33 (2011) 1175– 1182
[70] 百度文庫,弹性的应力和应变,http://wenku.baidu.com/view/d68809bd81c758f5f61f67b1.html
[71] 李雄、洪志維,鋁合金輪圈強度之有限元素分析,碩士論文,國立中央大學機械工程研究所,93年
[72] G.H.I.M. Walenkamp, D.W. Murray, 2001, Bone Cements and Cementing Technology, Springer Berlin Heidelberg, 191 pages ISBN: 978-3-540-41677-7