簡易檢索 / 詳目顯示

研究生: 吳其沛
Chi-Pei Wu
論文名稱: CMOS-MEMS熱掃瞄探針的設計與製作
Design and Fabrication of CMOS-MEMS Probes for Scanning Thermal Microscopy
指導教授: 盧向成
Shiang-Cheng Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 94
中文關鍵詞: 微機電熱電偶熱掃瞄探針西貝效應互補式金屬氧化層半導體熱時間常數
外文關鍵詞: CMOS, MEMS, SThM, Thermocouple, Scanning Thermal Probe, Thermopile
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Scanning Thermal Microscopy (SThM)是一種以探針掃瞄樣品表面而得到溫度分佈曲線在奈米等級解析度的方式,目前已經有少量商品化儀器在市場上。過去在文獻中曾出現以薄膜式bolometer、熱電偶、及Shottky diode 製作感熱的機制;例如:用polyimide作結構材料,用Ni/W作熱電偶,發展出一套與CMOS相容的六個光罩製程。而係數所有相關文獻,如今並沒有任何SThM探針與CMOS已完全整合,事實上最大的挑戰仍在製程,而這也是我們製作CMOS-MEMS SThM探針陣列的最主要動機之一。
    本研究旨在設計及製作微探針掃描陣列用以掃瞄待測物表面的溫度分佈,而藉由尖銳的探針作為熱感測介面,達到接近奈米等級的掃瞄解析度。目前相關文獻中尚未出現與CMOS整合的相關研究,同時在探針掃瞄高度的伺服控制上相關的研究幾乎少見;針對這兩點,我們創先提出CMOS-MEMS熱掃瞄探針的製作概念及設計,利用現成CMOS材料作thermopile的熱電式感測,並利用絕緣層作探針結構的絕熱設計;在進行熱掃瞄之同時,探針與掃瞄表面需維持固定的掃瞄接觸力,所以我們將採用壓阻式感測提供探針接觸力,用以驅動一熱致動器以維持探針與掃瞄表面接觸力。針對探針未來的陣列化,與CMOS結合並採on-chip掃瞄探針高度控制的方式具有非常大的優勢。


    The goal of this research is to design and to fabricate CMOS micromachined probes for scanning thermal microscopy that enable quantitative nanometer-scale study of thermal properties for the sample by the deposited tip. CMOS materials are used for thermoelectric sensing. The dielectric layer in the structure is used for thermal isolation. During a scanning thermal process, the contact force between the probe and the sample must be constant. We thus integrate the piezoresistor and thermal actuator into a scanning thermal microscopy.
    According to all of the above, scanning thermal microscopy can detect thermal spatial resolution in nanometer-scale by using a probe to scan the sample surface. Prior work has used bolometer, thermocouple, and shottky diode for detection. In all of the relevant publications, there is no scanning thermal microscopy integrated completely with CMOS technique, and this is what we aim to accomplish.

    Abstract I Acknowledgement III Table of Contents IV List of Figures VI List of Tables IX Chapter 1 1 1. Introduction 1 1.1. Introduction to CMOS-MEMS 1 1.2. The development of CMOS-MEMS technology 3 1.2.1. Bulk micromachining 3 1.2.2. Surface micromachining 3 1.2.3. LIGA, micro-EDM, excimer laser and so on 4 1.3. Introduction to Temperature Sensors 4 1.3.1. Sensor Types and Technologies 5 1.4. Motivation & Paper Survey 10 Chapter 2 13 2. Design of Scanning Thermal Microscopy (SThM) 13 2.1. Introduction 13 2.2. Design goals 15 2.3. The concepts for scanning thermal microscopy 17 2.3.1. Introduction To thermocouples 17 2.3.2. The Application of thermocouples 17 2.4. Design of control elements for scanning thermal microscopy 22 2.4.1. Thermal Actuator 22 2.4.1.1. Thermal Expansion 22 2.4.1.2. Thermal Actuation 26 2.4.1.3. Piezoresistior 28 2.5. Probe Design 36 2.6. Piezoresistive Sensing Circuit 44 2.6.1. Introduction 44 2.6.2. Two-Stage CMOS OP Amp 46 Chapter 3 49 3. Fabrication 49 3.1. Introduction 49 3.2. Wet Etching 53 3.3. XeF2 Gas for Release 57 3.4. RIE (Reactive Ion Etch) 59 3.5. The Deposition of The Tip and Wire Bonding 61 Chapter 4 63 4. Simulation & Experimental Results 63 4.1. CoventorWare 63 4.2. Simulation Results 65 4.2.1. Resonant Frequency 65 4.2.2. Thermal Actuation 65 4.3. Experimental Results 67 4.3.1. Thermal Actuation 67 4.3.2. Thermal Distribution of The Thermal Actuator 73 4.3.3. Thermocouple Output vs. △T Change 77 4.3.4. Resonant Frequency 79 4.3.5. Thermal Time Constant for Thermal Actuator 82 4.3.6. Thermal Time Constant for Thermocouples 84 4.3.7. SEM of The SThM Structures 86 4.3.8. The Piezoresistive Sensing Circuit 87 Chapter 5 90 5. Conclusion 90 References 91

    [1] A. Majumdar, “Scanning Thermal Microscopy,” Annual Review of Material Sciences, Vol. 29, pp. 505-585, 1999.
    [2] R. J. Pylkki, P. J. Moyer, P. E. West, “Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy,” Japanese Journal of Applied Physics, vol. 33, pp. 3785-3790, 1994.
    [3] A. Majumdar, J. Carrejo, J. Lai, “Thermal Imaging using the atomic force microscope,” Applied Physics Letters, Vol. 62, pp. 2501-2503, 1993.
    [4] Veeco Metrology, TM Microscopes of Santa Clara, California.
    [5] A. Schaufelbuhl, N. Schneeberger, U. Munch, M. Waelti, O. Paul, O. Brand, H. Baltes, C. Menolfi, Q. Huang, E. Doering, M. Loepfe, “Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array,” J.Microelectromech. Syst, no. 10, pp. 503-510, 2001.
    [6] C. C. Williams, H. K. Wickramsinghe, “Scanning thermal profiler,” Appl. Phys. Lett, vol. 49, no. 23, pp. 1587-1589, 1986.
    [7] K. Luo, Z. Shi, J. Varesi, A. Majumdar, “Sensor Nanofabrication, Performance, and Conduction Mechanisms in Scanning Thermal Microscopy,” Journal of Vacuum Science and Technology B, Vol.15, pp. 349-360, 1997.
    [8] M.-H. Li, Y. B. Gianchandani, “Microcalorimetry applications of a surface micromachined bolometer-type thermal probe,” J. Vac. Sci. Tech. B, vol. 18, no. 6, 2000.
    [9] Y. Suzuki, “Novel microcantilever for scanning thermal imaging microscopy,” Jpn. J. Appl. Phys., pt. 2, vol. 35, no. 3A, pp. L352-4, 1996.
    [10] Y. B. Gianchandani, K. Najafi, “A silicon micromachined scanning thermal profiler with integrated elements for sensing and actuation,” IEEE Trans. Electron Devices, vol. 44, pp. 1857-1867, 1997.
    [11] M.-H. Li, J. J. Wu, Y. B. Gianchandani, “Surface micromachined polyimide scanning thermocouple probes,” J. Microelectromech. Syst., vol. 10, no. 1, pp. 3-9, 2001.
    [12] G. Mills, H. Zhou, A. Midha, L. Donaldson, J. M. R. Weaver, “Scanning thermal microscopy using batch fabricated thermal probes,” Appl. Phys. Lett., vol. 72, no. 22, pp. 2900-2, 1998.
    [13] T. Leinhos, M. Stopka, E. Oesterschulze, “Micromachined fabrication of Si cantilevers with Schottky diodes integrated in the tip,” Appl. Phys. A, vol. 66, pp. S65-9, 1998.
    [14] L. Shi, O. Kwon, A. C. Miner, A. Majumdar, “Design and Batch Fabrication of Probes for Sub-100nm Scanning Thermal Microscopy,” Journal of Microelectromechanical Systems, vol. 10, no. 3, 2001.
    [15] H. M. Pollock, A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D: Appl. Phys, vol. 34, pp. 23-53, 2001.
    [16] M. H. Li, J. H. Lee, A. K. Menon, Y. B. Gianchandani, “Application of a low contact force polyimide shank bolometer probe for chemical and biological diagnostics,” Sensors and Actuators A, vol. 104, pp. 236-245, 2003.
    [17] N. Khurana, and C.-L. Chiang, “Analysis of Product Hot Electron Problems by Gated Emission Microscopy,” IEEE Proceedings of International Reliability Physics Symposium, pp. 189-194, 1986.
    [18] Y. S. Ju, K. E. Goodson, “Short-Time-Scale Thermal Mapping of Microdevices Using a Scanning Thermoreflectance Technique,” ASME Journal of Heat Transfer, Vol.120, pp. 306-313, 1998.
    [19] G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S.Gőrlich, L. J. Balk, “Failure analysis of integrated devices by Scanning Thermal Microscopy (SThM)” Microelectronics Reliability, vol. 38, pp. 957-961, 1998.
    [20] O. Brand, G. K. Fedder, et al., “CMOS-MEMS,” Weinheim: Wiley, 2005.
    [21] G. C. M. Meijer, A. W. Herwaarden, ”Thermal Sensors,” 1994.
    [22] R. Muanghlua, S. Cheirsirikul, S. Supadech, “The Study of Silicon Thermopile,” Proceedings, vol. 3, pp. 226-229, 2000.
    [23] S. M. Sze, “Semiconductor Sensors,” New York: Wiley, 1994.
    [24] A. Schaufelbuhl, “Thermal imagers in CMOS technology,” PhD Thesis, ETH Zurich, 2001.
    [25] N. Schneeberger, “CMOS Microsystems for thermal presence detection,” PhD Thesis, ETH Zurich, 1998.
    [26] N. Schneeberger, O. Paul, H. Baltes, “Optimization of CMOS infrared detector Microsystems,” Proc. SPIE, vol. 2882, pp. 122-131, 1996.
    [27] W. G. Bear, K. Najafi, K. D. Wise, R. S. Toth, “A 32-element micromachined thermal imager with on-chip multiplexing,” Sens. Actuators A, vol. 48, pp. 47-54, 1995.
    [28] A. D. Oliver, K. D. Wise, “A 1024-element bulk-micromachined thermopile infrared imaging array,” Sens. Actuators A, vol. 73, pp. 222-231, 1999.
    [29] A. Schaufelbuhl, U. Munch, C. Menfoli, O. Brand, O. Paul, Q. Huang, H. Baltes, “256-pixel CMOS-integrated thermoelectric infrared sensor array,” 14th IEEE Int. MicroElectroMechanical Systems Conf. (MEMS 2001), pp.200-203, 2001.
    [30] T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murasshima, N. Fujimoto, N. Teranish, “Uncooled infrared focal plane array have 128×128 thermopile detector elements,” Proc. SPIE, vol. 2269, pp. 450-459, 1994.
    [31] T. Akin, Z. Olgun, O. Akar, H. Kulah, “ An integrated thermopile structure with high responsivity using any standard CMOS technology,” Sens. Actuators A, vol. 66, pp. 218-224, 1998.
    [32] D. R. Lide, ed., “Handbook of Chemistry and Physics. Boca Raton, L: CRC Press,” 78th ed., 1997.
    [33] D. Stephen, “Microsystem Design,” Boston: Kluwer Academic Publishers, 2001.
    [34] R. R.Tummala, E. J. Rymaszewski, et. al, “Microelectronic Packaging Handbook,” New York: Van Nostrand Reinhold, 1989.
    [35] American Institute of Physics, “American Institute of Physics Handbook,” New York: McGraw-Hill, 1972.
    [36] C. H. Mastrangelo, Y. C. Tai, R. S. Muller, “Thermophysical properties of low-residual-stress, silicon-rich LPCVD silicon nitride films,” Sensors & Actuators, vol. A23, pp. 856-880, 1990.
    [37] S. Beeby, et al., “MEMS mechanical sensors,” Boston, MA: Artech House, 2004.
    [38] S. P. Timoshenko, S. Woinowski-Krieger, “Theory of Plates and Shells,” New York: McGraw-Hill, 1983
    [39] G. T. A. Kovacs, “Micromachined transducers sourcebook,” Boston, Ma: NCB, 1998.
    [40] S. Middelhoke, S. A. Audet, “Silicon Sensors,” New Work: Academic Press, 1989.
    [41] A. C. Miner, “Scanning probe microscopy for the study of thermal, electrical, and thermal electric properties,” PhD Thesis, University of California, Berkeley, 2002.
    [42] J. Lee, Y. B. Gianchandani, “A Temperature-Dithering Closed-Loop Interface Circuit for a Scanning Thermal Microscopy System,” Journal of Microelectromechanical Systems, vol.14, no.1, 2005.
    [43] P. M. Sarro, “Integrated silicon thermopile infrared detectors,” PhD Thesis, Delft Technical University, 1987.
    [44] R. Lenggenhager, “CMOS thermoelectric infrared sensors,” PhD Thesis, ETH Zurich, 1994.
    [45] F. Voelklein, “Review of the thermoelectric efficiency of bulk and thin-film materials,” Sens. Mater, no. 8, pp. 389-408, 1996.
    [46] D. Jaeggi, “Thermal converters by CMOS technology,” PhD Thesis, ETH Zurich, 1996.
    [47] E. Socher, O. Bochobza-Degani, Y. Nemirovsky, “A novel spiral CMOS compatible micromachined thermoelectric IR microsensor,” J. Micromech. Microeng, no. 11, pp. 574-576, 2001.
    [48] E. Socher, Y. Sinai, O. Bochobza-Degani, Y. Nemirovsky, “Modeling, design and fabrication of uncooled IR CMOS compatible thermoelectric sensors,” Proc. SPIE, no. 4820, pp.736-734, 2003.
    [49] D. A. Johns, K. Martin, “Analog integrated circuit design,” Toronto: Wiley, 1997.
    [50] C. H. Du, Z. Lin, C. Lee, “Two-level thermoelectric structures based on CMOS process,” 14th European Conference on Solid-State Transducers, Copenhagen, pp.33-36, 2000.
    [51] M. Chirtoc, X. Filip, J. F. Henry, J. S. Antoniow, I. Chirtoc, D. Dietzel, R. Meckenstock, J. Pelzl, “Thermal probe self-calibration in ac scanning thermal microscopy,” Superlattices and Microstructures 35 (3-6), pp. 305-314, 2004.
    [52] M. M. Gauthier, “Engineering Materials Handbook,” ASM desk edition, Materials Park, OH, November 1995.
    [53] P. E. Allen, D. R. Holberg, “CMOS Analog Circuit Design,” 2nd edition, Harcourt Brace Jovanovich, Inc., 2002.
    [54] Y. L. Chen, “Design and Fabrication of Servo-Controlled CMOS-MEMS Micro-Mirrors for Optical Communication,” Master Thesis, National Tsing Hua University, 2004.
    [55] A. Dec, K. Suyama, “A 2.4GHz CMOS LC Using Micromachined Variable Capacitors for Frequency Tuning,” IEEE MTT-S Digest. pp. 79-82, 1999.
    [56] F. I. Chang, R. Yeh, G. Lin, P. B. Chu, E. Hoffman, E. J. J. Kruglick, K. S. J. Pister. M. H. Hecht, “Gas-Phase Silicon Micromachining with Xenon Difluoride,” Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Application, SPIE Proc. vol. 2631, pp. 117-128, 1995.
    [57] http://www.coventor.com.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE