研究生: |
王聖琮 Wang, Sheng-Tsung |
---|---|
論文名稱: |
一個利用多位元量化器之離散時間2-2強健式雜訊塑型三角積分調變器 A Discrete-Time 2-2 Sturdy-MASH Delta-Sigma Modulator with a Multi-bit Quantizer |
指導教授: |
謝志成
Hsieh, Chih-Cheng |
口試委員: |
許雲翔
張順志 Chang, Soon-Jyh 謝秉璇 Hsieh, Ping-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 強健式雜訊塑型 、多位元量化器 、三角積分調變器 |
外文關鍵詞: | Sturdy MASH, Multi-bit quantizer, Delta-Sigma Modulator |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一個離散時間之強健式雜訊塑型三角積分調變器,有四階雜訊塑型的效果,能大幅降低的量化雜訊。
所提出的三角積分調變器,利用多迴路系統改善穩定度的問題,如此可以有較好的雜訊塑型效果,以降低量化雜訊並提升效能。迴路系統分為兩級,每一級之迴路濾波器皆為二階,整體系統之迴路濾波器等效為四階,而其每一迴路僅需達到二階迴路濾波器之穩定度需求即可。此外,不同於多級雜訊塑型架構,強健式多級雜訊塑型架構不會有雜訊洩漏導致SNDR降低的問題。此調變器選擇輸入前饋的架構來實現迴路濾波器,如此降低迴路濾波器在內部訊號的大小;並且利用多位元量化器,除了能壓低量化雜訊以達到較好的效能外,也能改善系統穩定度的問題,且能減緩迴路濾波器之線性度需求。在使用強健式雜訊塑型的架構下,此離散時間三角積分調變器的設計能完全消除前級量化雜訊的設計,並提出一改良積分器以降低放大器的規格需求。
此架構使用90奈米1P6M CMOS製程,在1.042-MHz訊號頻寬及25-MHz取樣頻率之下達到62.2-dB的最高SNDR。此調變器的晶片面積為0.71 um2,並在1伏電源電壓的操作。
This thesis presents a discrete-time sturdy multi-stage noise-shaping (SMASH) delta-sigma modulator with fourth-order noise-shaping effect to reduce the quantization noise obviously.
The proposed delta-sigma modulator is composed of two stages with a second-order loop filter in each stage. Hence, it is equivalent to a fourth-order loop filter, but it just need to satisfy the requirement of a second-order loop-filter stability in each loop. The technique not only improves the issue of stability but also achieves more aggressive noise shaping to reduce the in-band quantization noise. In contrast with a multi-stage noise-shaping (MASH) structure, a SMASH one does not suffer from the problem of quantization noise leakage which degrades performance of a delta-sigma modulator. In this proposed modulator, loop filters are implemented by an input-feedforward topology which causes internal nodes lower voltage swings. In addition to reducing quantization noise, it can improve a problem of system stability and relax the requirement on linearity of loop filters by using multi-bit quantizers. In the discrete-time sigma-delta modulator, canceling of the former quantization noise is realized with a SMASH structure, and a modified integrator is proposed to release requirements of opamp specifications.
The prototype is implemented in 90nm 1P9M CMOS technology, achieving 70-dB peak SNDR over a 10-MHz signal bandwidth at a 240-MHz sampling frequency. The modulator occupies 0.71-um2 core area.
[1] L. Qi, S.-W. Sin, S.-P. U, F. Maloberti, and R. P. Martins, "A 4.2-mW 77.1-dB SNDR 5-MHz BW DT 2-1 MASH ΔΣ Modulator With Multirate Opamp Sharing," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 10, pp. 2641-2654, Oct. 2017.
[2] S. Loeda, J. Harrison, F. Pourchet, and A. Adams, "A 10/20/30/40 MHz Feedforward FIR DAC Continuous-Time ΔΣ ADC With Robust Blocker Performance for Radio Receivers," IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 860-870, Apr. 2016.
[3] M. Park and M. H. Perrott, "A 78 dB SNDR 87 mW 20 MHz Bandwidth Continuous-Time ΔΣ ADC With VCO-Based Integrator and Quantizer Implemented in 0.13 μm CMOS," IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3344-3358, Dec. 2009.
[4] Y. Dong et al., "A 930mW CT 1-2 MASH ADC Achieving 69dB-DR over 465MHz-BW in 28nm CMOS," in IEEE ISSCC Dig. Tech. Papers, Jan. 2016, pp. 278-279.
[5] N. Maghari, S. Kwon, and U.-K. Moon, "74 dB SNDR Multi-Loop Sturdy-MASH Delta-Sigma Modulator Using 35 dB Open-Loop Opamp Gain," IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2212-2221, Aug. 2009.
[6] D.-Y. Yoon, S. Ho, and H.-S. Lee, "A Continuous-Time Sturdy-MASH ΔΣ Modulator in 28 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2880-2890, Dec. 2015.
[7] J. M. de la Rosa, R. Schreier, K.-P. Pun, and S. Pavan, "Next-Generation Delta-Sigma Converters: Trends and Perspectives," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 5, no. 4, pp. 484-499, Dec. 2015.
[8] H. Shibata et al., "A DC-to-1 GHz Tunable RF ΔΣ ADC Achieving DR=74 dB and BW=150 MHz at f0=450 MHz Using 550 mW," IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2888-2897, Dec. 2012.
[9] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters:Theory, Design, and Simulation. New York: Wiley-IEEE Press, 1996.
[10] M. Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta AD Conversion. The Netherlands: Springer-Verlag Berlin Heidelberg, 2006.
[11] K. C.-H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, "A Higher Order Topology for Interpolative Modulators for Oversampling A/D Converters," IEEE Transactions on Circuits and Systems, vol. 37, no. 3, pp. 309-318, Mar. 1990.
[12] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. Piscataway, NJ: Wiley-IEEE Press, 2005.
[13] J. M. de la Rosa, "Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 1-21, Jan. 2011.
[14] P. Witte and M. Ortmanns, "Background DAC Error Estimation Using a Pseudo Random Noise Based Correlation Technique for Sigma-Delta Analog-to-Digital Converters," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 7, pp. 1500-1512, Jul. 2010.
[15] I. Galton and P. Carbone, "A Rigorous Error Analysis of D/A Conversion with Dynamic Element Matching," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 12, pp. 763-772, Dec. 1995.
[16] R. T. Baird and T. S. Fiex, "Improved ΔΣ DAC Linearity Using Data Weighted Averaging," in IEEE Int. Symp. Circuits and Systems, vol. 1, May 1995, pp. 13-16.
[17] R. T. Baird and T. S. Fiez, "Linearity Enhancement of Multibit ΔΣ AD and DA Converters Using Data Weighted Averaging," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 12, pp. 753-762, Dec. 1995.
[18] J. A. P. Nys and R. K. Henderson, "An Analysis of Dynamic Element Matching Techniques In Sigma-Delta Modulation," in IEEE Int. Symp. Circuits and Systems, May 1996, pp. 231-234.
[19] K.-D. Chen and T.-H. Kuo, "An Improved Technique for Reducing Baseband Tones in Sigma–Delta Modulators Employing Data Weighted Averaging Algorithm Without Adding Dither," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 1, pp. 63-68, Jan. 1999.
[20] T.-H. Kuo, K.-D. Chen, and H.-R. Yeng, "A Wideband CMOS Sigma–Delta Modulator With Incremental Data Weighted Averaging," IEEE Journal of Solid-State Circuits, vol. 37, no. 1, Jan. 2002.
[21] D.-H. Lee and T.-H. Kuo, "Advancing Data Weighted Averaging Technique for Multi-Bit Sigma–Delta Modulators," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 10, pp. 838-842, 2007.
[22] C.-H. Weng, W.-H. Huang, E. Alpman, and T.-H. Lin, "A 13-MHz 68-dB SNDR CTDSM Using SAB Loop Filter and Interpolating Flash Quantizer with Random-Skip IDWA Function in 90-nm CMOS," IEEE Asian Solid-State Circuits Conference, Nov. 2015.
[23] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, and A. Baschirotto, "Behavioral Modeling of Switched-Capacitor Sigma-Delta Modulators," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 3, pp. 352-364, Mar. 2003.
[24] N. Maghari, S. Kwon, G. C. Temes, and U. Moon, "Sturdy MASH ΔΣ modulator," Electronics Letters, vol. 42, no. 22, p. 1269, 2006.
[25] C. Han, T. Kim, and N. Maghari, "Sturdy-MASH Delta-Sigma Modulator with Noise-Shaped Integrating Quantizer and Dual-DAC DWA," in IEEE Int. Symp. Circuits and Systems, vol. 42, Jul. 2015, pp. 1269-1270.
[26] R. Schreier, The Delta-Sigma ToolboxVersion 2016.1. Jun. 2016 [Online]. Available: http://www.mathworks.com/.
[27] C.-Y. Ho, Z.-M. Lee, M.-C. Huang, and S.-J. Huang, "A 75.1dB SNDR, 80.2dB DR, 4th-order Feed-forward Continuous-Time Sigma-Delta Modulator with Hybrid Integrator for Silicon TV-tuner Application," in IEEE Asian Solid-State Circuits Conference, Nov. 2011, pp. 261-264.
[28] O. Choksi and L. R. Carley, "Analysis of Switched-Capacitor Common-Mode Feedback Circuit," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 12, pp. 906-917, 2003.
[29] T. Kim, C. Han, and N. Maghari, "A 4th-Order Continuous-Time Delta-Sigma Modulator Using 6-bit Double Noise-Shaped Quantizer," IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3248-3261, Dec. 2017.
[30] B. Nowacki, N. Paulino, and J. Goes, "A 1V 77dB-DR 72dB-SNDR 10MHz-BW 2-1 MASH CT ΔΣM," in IEEE ISSCC Dig. Tech. Papers, Jan. 2016, pp. 274-275.
[31] T. Kim, C. Han, and N. Maghari, "A 7.2 mW 75.3 dB SNDR 10 MHz BW CT Delta-Sigma Modulator Using Gm-C-Based Noise-Shaped Quantizer and Digital Integrator," in IEEE Symp. on VLSI Circuits, Jun. 2015, pp. 258-259.
[32] Y.-S. Shu, J.-Y. Tsai, P. Chen, T.-Y. Lo, and P.-C. Chiu, "A 28fJConv-Step CT ΔΣ Modulator with 78dB DR and 18MHz BW in 28nm CMOS Using a Highly Digital Multibit Quantizer," in IEEE ISSCC Dig. Tech. Papers, Jan. 2013, pp. 268-269.
[33] K. Matsukawa, Y. Mitani, M. Takayama, K. Obata, S. Dosho, and A. Matsuzawa, "A Fifth-Order Continuous-Time Delta-Sigma Modulator With Single-Opamp Resonator," IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 697-706, 2010.