簡易檢索 / 詳目顯示

研究生: 蘇暉家
HuiChia Su
論文名稱: 在清華大學水池式反應器建立研究磁性薄膜用之散射極化中子束
The commissioning of a polarized neutron scattering beamline for studying magnetic films at THOR
指導教授: 李志浩
Chih-Hao Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 102
中文關鍵詞: 極化中子極化中子反射率中子去極化中子束磁區磁相干長度縱深分佈中子繞射磁塊材
外文關鍵詞: Polarized Neutrons, Polarized Neutron Reflectivity, Neutron Depolarization, Neutron Beam, Magnetic Domain, Magnetic Correlation Length, Depth Profile, Neutron Diffraction, Magnetic Bulk
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在清華水池式反應器,已經完成一條可以用來量測極化中子反射率、中子去極化以及中子繞射的散射極化中子束。極化中子對於量測磁性材料的磁性質相當有用。極化中子反射率是用來量測薄膜系統的縱深分佈;而在清華水池式反應器,中子去極化則用來量測從次毫米到次釐米這範圍間的磁相干長度 (又稱磁區)。
    在極化中子反射率方面:在清華水池式反應器,當波向量的解析度在0.2 nm-1時,極化中子反射率的動態範圍只有2 個數量級的強度,只有臨界角部分可以被量測到。也就是說只能量測到平均磁矩而無法量測到整個樣品的縱深分佈。相較於在加拿大,Chalk River 的反應器,他們可以達到5個數量級的動態範圍。
    在中子去極化方面:傳統上都是由觀察磁性材料表面的磁區再來解釋磁塊材內部的的磁區,但是少有實驗可以證明。中子去極化可以提供非破壞性地量測磁塊材的內部。目前有在清華水池式反應器,在鎳鐵合金上量測一維的中子去極化實驗。從量測到的去極化因子0.79以及旋轉角 0.63 rad,可以得到在平均磁感應240 Oe下的磁相干長度大約是 35 毫米。目前這條散射中子束亦正在擴建為三維的去極化中子束。這裡也初步報告了三維去極化實驗的測試。


    A polarized neutron scattering beamline at W3 beam port in Tsing Hua Open-pool Reactor (THOR) was constructed for polarized neutron reflectivity, neutron depolarization, and neutron diffraction. Polarized neutrons are powerful for measuring the magnetic properties of a magnetic material. Polarized neutron reflectivity is used to measure the magnetic depth profiles of a thin film system; and neutron depolarization is for measuring the magnetic correlation lengths, which are also called magnetic domains, in the range from sub-μm to sub-mm at THOR.
    For polarized neutron reflectivity at THOR, the dynamical range of the reflectivity measurement is limited to 2 orders of magnitude, only critical angle can be measured with a Q-resolution of 0.2 nm-1, i.e., the average magnetic moment can be measured but the depth profile of the sample is not possible to be obtained. Comparing to the reflectivity measurement on Ni80Fe20/Ru multilayer system at NRU reactor of Chalk River, Canada, a dynamical range of 5 orders is achieved.
    For neutron depolarization measurement, traditionally, only the observation of magnetic domain on the surface was used to explain the domain distribution in the interior of a bulk magnetic material, but rare experiments to measure the magnetic domain in the bulk were carried. Neutron depolarization can be used to determine the interior of a magnetic material non-destructively. A one-dimensional neutron depolarization experiment on NixFe100-x alloys was carried out at THOR. A magnetic correlation length of about 35 μm with an average induction of 240 Oe in the remnant state were deduced from the measured depolarization factor 0.79, and rotation angle 0.63 rad. Furthermore, this neutron scattering beamline is in process to be extended for doing 3-dimensional neutron depolarization experiments. The preliminary test on measuring the 3-dimensional neutron depolarization experiments is also reported.

    List of Figures……………………………………………………………………..iv List of Tables……………………………………………………………………...vii Chapter I Introduction…………………………………………………………..1 I.1 Current Status…………………………………………………………………...3 I.2 Motivation……………………………………………………………………….5 Chapter II Theory…………………………………………………………….....11 II.1 Neutron Reflectivity…………………………………………………………..11 II.1.1 Unpolarized Neutron Reflectivity…………………………………………...11 II.1.2 Polarized Neutron Reflectivity……………………………………………...13 II.1.3 Data Analysis……………………………………………………………......16 II.1.4 Corrections………………………………………………………………......18 II.2 Neutron Depolarization....................................................................................21 Chapter III Instrumentation setup………………………………….............30 Chapter IV Experimental and Discussion…………………………………36 IV.1 Sample Description…………………………………………………...............36 IV.1.1 NixFe100-x Sample Series……………………………………………………36 IV.1.2 Ni80Fe20/Ru Multilayers………………………………………………….....37 IV.2 Neutron Diffraction…………………………………………………………..40 IV.3 Unpolarized Neutron Reflectivity…………………………………………...44 IV.4 Polarized Neutron Reflectivity at THOR…………………………………...48 IV.5 Neutron Depolarization………………………………………………………50 Chapter V Current Development……………………………………………58 Chapter VI Summary…………………………………………………………..61 References…………………………………………………………………………63 Appendix I Polarized Neutron Reflectivity on Ni80Fe20/Ru multilayers at Chalk River………………………………………………….....74 AI.1 Model 1………………………………………………………………………..75 AI.2 Model 2………………………………………………………………………..84 AI.3 Comparison of Models of PNR……………………………………………...88 AI.3.1 Magnetic Dead Layer………………………………………………………88 AI.3.2 Model 1 and Model 2………………………………………………………90 AI References………………………………………………………………………92 Appendix II Applications of ND……………………………………………...94 AII.1 Static Depolarization………………………………………………………..94 AII.2 Dynamic Depolarization…………………………………………………....98 Curriculum Vitae……………………………………………………………….100 List of Figures □ Chapter II Fig. 1 The definition of the laboratory axes, x , y , and z……………………………24 □ Chapter III Fig. 2 The schematic diagram of the THOR-W3 neutron beamline…………………31 Fig. 3 The Q-resolution of the neutron powder diffraction either in parallel (solid line) or anti-parallel (dash line) configuration………………………………………32 Fig. 4 The rocking curve of the Heusler (Cu2MnAl) crystal measured by neutron diffraction…………………………………………………………………….34 Fig. 5 The schematic diagram of THOR-W3 neutron beamline for polarization experiment…………………………………………………………………..35 □ Chapter IV Fig. 6 The neutron diffraction peak of Heusler (Cu2MnAl (111) single crystal……...43 Fig. 7 (a) The neutron diffraction patterns of Ni75Fe25 samples before annealing (open circle) and after annealing (filled circle). (b) The X-ray diffraction of the Ni75Fe25 alloys…………………………………………………………………46 Fig. 8 The neutron reflectivity of a Ni (3 nm)/Ti (2.85 nm) multilayer (a) without the sapphire filter; (b) with sapphire filter at a Q-resolution of 0.2 nm-1………….47 Fig. 9 PNR curves of Ni80Fe20/Ru (2.1 nm) multilayer obtained at a Q-resolution of 0.2 nm-1 under an external field 300 Oe at THOR-W3 neutron beamline…… 49 Fig. 10 The magnetic hysteresis loops of ordered and disordered Ni75Fe25 alloys…...54 Fig. 11 The surface domain of non-annealed Ni75Fe25 alloy which were observed by BM under an external field (a) 5 Oe, and (b) 3500 Oe………………………55 Fig. 12 The surface domain of non-annealed Ni75Fe25 alloy which was observed by MFM………………………………………………………………………….56 Fig. 13 The images of Ni80Fe20 powders which were pressed under a pressure 100 kg/cm2 within (a) 10 min and (b) 30 min, respectively, observed by an optical microscopy (OM) with 200 times of magnification……………………….....57 □ Chapter V Fig. 14 The diagram of current THOR-W3 beamline setup. The selected neutron wavelength for 3D ND beamline is 0.237 nm (in blue circle)……………...59 Fig. 15 The components of the green box. There includes spin rotator IN and OUT, and a zero-field chamber made by µ-metal for samples……………………60 Fig. 16 The neutron polarization curve of 3D ND beamline at THOR………………60 □ Appendix I Fig. A1 The X-ray reflectivity results of Ni80Fe20/Ru multilayers with the thickness of Ru spacer layer are 0.9 nm (full circle) and 2.1 nm (open circle)…………..77 Fig. A2 The experimental results of PNR of Py/Ru multilayers of (a) 0.9 nm under the applied field 30 – 35 Oe, (b) 2.1 nm under 30 – 35 Oe, (c) 0.9 nm under 1 T, and (d) 2.1 nm under 0.2 T in model 1……………………………………...79 Fig. A3 The magnetic hysteresis loop of the samples with Ru thickness of (a) 0.9 nm, and (b) 2.1 nm measured by LMOKE, respectively. ……………………….80 Fig. A4 The MR ratio of Ru thickness (a) 0.9 nm, and (b) 2.1 nm…………………..80 Fig. A5 The experimental results and simulations of PNR of Ni80Fe20/Ru multilayers of (a) 0.9 nm under the applied field 30 – 35 Oe, (b) 2.1 nm under 30 – 35 Oe, (c) 0.9 nm under 1 T, and (d) 2.1 nm under 0.2 T in model 2………………87 Fig. A6 The comparion between the analyzing models with and without magnetic dead layers on the sample of Ru with thicnkness of 0.9 nm………………89 Fig. A7 The comparison between the model 1 and the model 2 on analyzing the experimental data………………………………………………………….91 List of Tables □ Chapter I Table I Neutron scattering beamlines for neutron depolarization experiments………..9 □ Chapter III Table II The characteristics of the components of THOR-W3 beamline besides polarization devices………………………………………………………..33 Table III The characteristics of the polarization devices…………………………….34 Table IV The characteristics of THOR-W3 beamline………………………………..35 □ Chapter IV Table V The measurements of the 1D ND experiments on NixFe100-x alloys (x = 75, 80)….............................................................................................................54 □ Appendix I Table A1 Simulation parameters of the Pt/[Py/Ru(t)]5/Py/Pt/Al2O3 (t = 0.9 nm and 2.1 nm) thin film obtained from X-ray reflectivity measurements……………78 Table A2 Simulation parameters of the Pt/Ni80Fe20/Ru(t)]5/Ni80Fe20/Pt/Al2O3 (t = 0.9 nm and 2.1 nm) thin film obtained from polarized neutron reflectivity measurements in model 1………………………………………………….81 Table A3 Simulation parameters of the Pt/[Ni80Fe20/Ru(t)]5/Ni80Fe20/Pt/Al2O3 (t = 0.9 nm and 2.1 nm) thin film obtained from polarized neutron reflectivity measurements in model 2………………………………………………….82 Table A4 The difference between model 1 and model 2 of PNR data on samples Pt/[Ni80Fe20/Ru(t)]5/Ni80Fe20/Pt/Al2O3 (t = 0.9 nm and 2.1 nm)…………..83

    References:

    □ Chapter I
    [I-1] http://nobelprize.org/nobel_prizes/physics/laureates/1935/chadwick-bio.html.
    [I-2] J. Chakwick, Proc. Roy. Soc. (London) A 136 (1932) 692.
    [I-3] J. E. Sherwood, T. E. Stephenson, and S. Bernstein, Phys. Rev. 96 (1954) 1946.
    [I-4] D. J. Hughes, and M. T. Burgy, Phys. Rev. 81 (1951) 498.
    [I-5] C. G. Shull in Lectures on Neutron Physics, Proc. Int. School, JINR Dubna, 3-4981 (1970) 351 – 394.
    [I-6] J. B. Hayter, G. T. Jenkin, and J. W. White, Phys. Rev. Lett. 33 (1974) 696.
    [I-7] G. P. Felcher, Phys. Rev. B 24 (1981) 1595.
    [I-8] O. Halpern, T. Holstein, Phys. Rev. 59 (1941) 960.
    [I-9] R. Rosman et al., Z. Phys. B 79 (1990) 61.
    [I-10] http://www.sns.gov/.
    [I-11] http://jkj.tokai.jaeri.go.jp/.
    [I-12] http://enpi.vitamib.com/.
    [I-13] https://user.frm2.tum.de/.
    [I-14] http://www.ncu.edu.tw/~w3neutro/neutron2cht.html
    [I-15] H. C. Su, C. W. Hu, J. J. Peir, and C. H. Lee, Chinese J. Phys. 45 (2007) 374.
    [I-16] T. S. Chin et al., “Handbook of Magnetic Technologies” (Chinese Association for Magnetic technology, Taiwan, 2002).
    [I-17] H. Zabel, and K. Theis-Bröhl, J. Phys. 15 (2003) S505.
    [I-18] A. Hubert, and R. Schäfer, “Magnetic Domains: The analysis of magnetic microstructures” (Spriger-Verlag Berlin Heidelberg, 1998).
    [I-19] R. Rosman, “Magnetic particles studied with neutron depolarization and small-angle neutron scattering”, Ph.D. thesis, Technique University Delft.
    [I-20] http://history.acusd.edu/gen/recording/tape.html.
    [I-21] D. E. Bürgler, P. Grünberg, S. O. Demokritov, and M. T. Johnson, Interlayer exchange coupling in layered magnetic structures, Hankbook of Magnetic Materials 13, ed. K. H. J. Buschow (Amsterdam: Elsevier) (2001) 1.
    [I-22] U. Bovensiepen, F. Wilhelm, P. Srivastava, P. Poulopoulos, M. Farle, A. Ney, and K. Baberschke, Phys. Rev. Lett. 81 (1998) 2368.
    [I-23] H. A. M. van den Berg, W. Clemens, G. Gieres, G. Rupp, W. Schelter, and M. Vieth, IEEE Trans. Magn. 32 (1996) 4624.
    [I-24] H. C. Su, J. J. Peir, C. H. Lee, M. Z. Lin, P. T. Wu, J. C. A. Huang, and Z. Tun, Physica B 357 (2005) 80.
    [I-25] A. Schreyer, C. F. Majkrzak, T. Zeidler, T. Schmitte, P. Bödeker, K. Theis-Bröhl, A. Abromeit, J. Dura, and T. Watanabe, Phys. Rev. Lett. 79 (1997) 4914.
    [I-26] J. A. Borchers, J. A. Dura, J. Unguris, D. Tulchinsky, M. H. Kelley, C. F. Majkrzak, S. Y. Hsu, R. Loloee, W. P. Pratt, and J. Bass, Phys. Rev. Lett. 82 (1999) 2796.
    [I-27] M. R. Fitzsimmons, P. Yashar, C. Leighton, I.K. Schuller, J. Nogues, C.F. Majkrzak, and J. A. Dura, Phys. Rev. Lett. 84 (2000) 3986.
    [I-28] C. Leighton, M. R. Fitzsimmons, A. Hoffmann, J. Dura, C. F. Majkrzak, M. S. Lund, and I. K. Schuller, Phys. Rev. B 65 (2002) 064403.
    [I-29] M. Gierlings, M. J. Prandolini, H. Fritzsche, M. Gruyters, and D. Riegel, Phys. Rev. B 65 (2002) 092407.
    [I-30] S. G. E. te Velthuis, A. Berger, G. P. Felcher, B. K. Hill, E. Dan Dahlberg, J. Appl. Phys. 87 (2000) 5046.
    [I-31] S. G. E. te Velthuis, G. P. Felcher, S. Jiang, A. Inomata, C. S. Nelson, A. Berger, and S. D. Bader, Appl. Phys. Lett. 75 (1999) 4174.
    [I-32] E. E. Fullerton, S. D. Bader, and J. L. Robertson, Phys. Rev. Lett. 77 (1996) 1382.
    [I-33] P. Bödeker, A. Schreyer, and H. Zabel, Phys. Rev. B 59 (1999) 9408.
    [I-34] V. Leiner, D. Labergerie, R. Siebrecht, Ch. Sutter, H. Zabel, Physica B 283 (2000) 167.
    [I-35] K. Temst, M. J. Van-Bael, and H. Fritzche, Appl. Phys. Lett. 79 (2001) 991.
    [I-36] K. Temst, M. J. Van-Bael, V. V. Moshchalkov, Y. Bruynseraede, H. Fritzsche, and R. Jonckheere, Appl. Phys. A 74 (2002) 51538.
    [I-37] C. Kittel, “Introduction to Solid State Physics 7th ed.”, John Wiley & Sons, Inc. (1996).
    [I-38] M.Th. Rekveldt, Z. Physik 259 (1973) 391.
    [I-39] R. Rosman et al., Z. Physik B 81 (1990) 149.
    [I-40] M.Th. Rekveldt, Physica B 267-268 (1999) 60.
    [I-41] http://nm.iri.tudelft.nl/meters/panda.html.
    [I-42] http://www.kfa-juelich.de/iff/wns_lap.
    [I-43] A. Ioffea, K. Bussmann, L. Dohmen, L. Axelrod, G. Gordeev, T. Brückel, Physica B 350 (2004) e815.
    [I-44] http://www.fz-juelich.de/iff/wns_overview/.
    [I-45] Cf. V. Wagner et al., J. Magn. Magn. Mater. 226-230 (2001) 1321.
    [I-46] http://www.gkss.de/pages.php?page=f_forschungsreaktor1.html.
    [I-47] http://www.gkss.de/pages.php?page=w_abt_genesys_poldi.html.
    [I-48] http://nrd.pnpi.spb.ru/wwrm/two1n_en.html.
    [I-49] http://nrd.pnpi.spb.ru/base/vvrm_pik_en.html.
    [I-50] http://neutron.nrc-cnrc.gc.ca/c5gen.html.
    [I-51] http://www.ansto.gov.au/ansto/bragg/hifar/long.html.
    [I-52] http://www.ansto.gov.au/natfac/hifar.html.
    [I-53] http://nfdfn.jinr.ru/ibr-2/main-parameters.html.
    [I-54] http://nfdfn.jinr.ru/fks/spn.html.
    [I-55] Y. G. Abov, V. P. Alfimenkov, E. M. Galinsky, L. Lason, Y. D. Mareev, V. V. Novitskii, L. B. Pikelner, V. M. Tsulaya, M. I. Tsulaya, and A. N. Chernikov, Instrum. Experm. Tech. 43 (2000) 291.
    [I-56] http://www.globalsecurity.org/wmd/world/india/trombay-reactor.htm.
    [I-57] Sk. M. Yusuf, and L. M. Rao, Pramana J. Phys. 47 (1996) 171.
    [I-58] http://www.barc.ernet.in/webpages/reactors/dhruva.html.
    [I-59] I. Mirebeau, S. Itoh, S. Mitsuda, T. watanabe, Y. Endoh, M. Hennion, and P. Calmettes, Phy. Rev. B 44 (1991) 5120.
    [I-60] I. Mirebeau, S. Itoh, S. Mitsuda, T. watanabe, Y. Endoh, M. Hennion, and R. Papoular, Phy. Rev. B 41 (1990) 11405.

    □ Chapter II
    [II-1] A. van der Graff, "Polarized Neutron Reflectometry on Thin Magnetic Films", (Delft University Press, Delft, 1997).
    [II-2] V. F. Sears, "Neutron Optics", (Oxford University Press, Oxiford, 1989).
    [II-3] J. Dailant, and A. Gibaud (Eds.), "X-Ray and Neutron Reflectivity: Principles and Applications", (Spriger-Verlag Berlin Heidelberg, 1999).
    [II-4] L. Névot, and P. Crose, Revue de Physique Appliquée, 15 (1980) 761.
    [II-5] W. G. Williams, “Polarized neutron”, (Clarendon Press, Oxford, 1988).
    [II-6] S. W. Lovesey, “Theory of neutron scattering from condensed matter”, Vol. 2 (Clarendon Press, Oxford, 1984).
    [II-7] J. Yu, U. Rüdiger, A. B. Kent, L. Thomas, and S. S. P. Parkin, Phys. Rev. B 60 (1999) 7352.
    [II-8] J. Leker, “Theory of Reflection of Electromagnetic and Particle Waves”, (Martinus Nijhoff Publisher, Dordrecht, 1987).
    [II-9] J. Penford, J. de Phys. 50 (1989) C7-99.
    [II-10] G. P. Flcher, R. O. Hilleke, R. K. Crawford, J. Haumann, R. Kleb, and G. Ostrowski, Rev. Sci. Instrum. 58 (1987) 609.
    [II-11] H. Zabel, and K. Theis-Bröhl, J. Phys. 15 (2003) S505.
    [II-12] T. Aign, P. Meyer, S. Lemerle, J. P. Jamet, J. Ferre, V. Mathet, C. Chappert, J. Gierak, C. Vieu, F. Rousseaux, H. Launois, and H. Bernas, Phys. Rev. Lett. 81 (1998) 8656.
    [II-13] P. T. Por, W. H. Kraan, M. Th. Rekveldt, Nucl. Instrum. Meth. A 300 (1991) 35.
    [II-14] P. R. Bevington, and D. K. Robinson, “Data reduction and error analysis for the physical sciences 3rd edition”, (McGraw-Hill, United States of America, 2003)
    [II-15] R. Rosman, “Magnetic particles studied with neutron depolarization and small-angle neutron scattering”, Ph.D. thesis, Technique University Delft.
    [II-16] G. Badurek, R. J. Buchelt, H. Leeb, and R. Szeywerth, Physica B 335 (2003) 114.
    [II-17] G. Badurek, R. J. Buchelt, and H. Leeb, Physica B 276-278 (2000) 588.
    [II-18] K. M. Podurets, S. A. Klimko, V. V. Runov, V. A. Somenkov, and V. P. Glazkov, Physica B 297 (2001) 258.
    [II-19] W. H. Kraan, and M. Th. Rekveldt, J. Magn. Magn. Mater. 15 (1977) 1501.
    [II-20] B. J. M. Willis, "Chemical applications of neutron scattering", Oxford University Press, Oxford (1973).
    [II-21] O. Halpern, and T. Holstein, Phys. Rev. 59 (1941) 960.
    [II-22] M. Th. Rekveldt, Z Phys. 259 (1973) 259.
    [II-23] M. Th. Rekveldt, J. Magn. Magn. Mater. 1 (1976) 342.
    [II-24] S. V. Maleev, and V. A. Ruban, JEPT 35 (1972) 222.
    [II-25] S. V. Maleev, and V. A. Ruban, Sov. Phys. Solid State 18 (1976) 1331.
    [II-26] B. P. Toperverg, and J. Weniger, Z. Phys. B 71 (1988) 95.
    [II-27] B. P. Toperverg, and J. Weniger, Z. Phys. B 74 (1989) 105.
    [II-28] V. I. Sbitnev, Z. Phys. B 74 (1989) 321.
    [II-29] P. T. Por, "Neutron depolarization in magnetic recording materials." Ph.D. thesis, Technique University Delft (1995).
    [II-30] R. Rosman, and M. Th. Rekveldt, Z. Phys. B 79 (1990) 61.
    [II-31] L. Dobrzynski, and K. Blinowski, “Neutrons and Solid State Physics”, (Ellis Horwood, 1994).

    □ Chapter III
    [III-1] J. R. Lamarsh, Introduction to Nuclear Engineering, 2nd ed. (Central Publisher, 1987), p. 32.
    [III-2] G. Caglioti, A. Paoletti, and F. P. Ricci, Nucl. Instrum. 3, 223 (1958).
    [III-3] H. C. Su, "The construction of neutron reflectometer at Tsing-Hua Open-Pool Reactor W3 beamport", Master Thesis, National Tsing Hua University (2002).

    □ Chapter IV
    [IV-1] W. Andrä, Brit., J. Appl. Phys. 1 (1968) 1.
    [IV-2] W. C. Elmore, Phys. Rev. 58 (1940) 640.
    [IV-3] H. Mahl, and J. Pohl, Z. Techn. Phys. 16 (1935) 219.
    [IV-4] S. Imada, S. Suga, W. Kuch, and J. Kirschner, Surf. Rev. Lett. 9 (2002) 877.
    [IV-5] S. Ramasamy, A. Narayanasamy, T. Nagarajan, K. P. Gopinathan, C. S. Sundar, and B. Viswanathan, Physica Scripta 23 (1981) 297.
    [IV-6] M. Kim, W. T. Geng, A. J. Freeman, L. P. Zhong, and J. Fernandez-de-Castro, J. Appl. Phys. 87 (2000) 5735.
    [IV-7] A. Oelsner, O. Schmidt, M. Schicketanz, M. Klais, G. Schönhense, V. Mergel, O. Jagutzki, and H. Schmidt-Böcking, Rev. Sci. Instrum. 72 (2001) 3974.
    [IV-8] J. Stöhr, Y. Wu, B. D. Hermsmeier, M. G. Samant, G. R. Harp, S. Koranda, D. Dunham, and B. P. Tonner, Science 259 (1993) 658.
    [IV-9] B. P. Tonner, and G. R. Harp, Rev. Sci. Instrum. 59 (1988) 853.
    [IV-10] E. E. Fullerton, D. T. Margulies, M. E. Schabes, M. Carey, B. Gurney, A. Moser, M. Best, G. Zeltzer, K. Rubin, and H. Rosen, Appl. Phys. Lett. 77, (2000) 3806.
    [IV-11] L. Cheng, Z. Altounian, D. H. Ryan, and J. O. Störm-Olsen, J. Appl. Phys. 91, (2002) 7188
    [IV-12] A. Scherz et al., Phys. Rev. B 64 (2001) 180407.
    [IV-13] J. Geissler et al., Phys. Rev. B 65 (2001) 020405.
    [IV-14] S.S.P. Parkin, N. More, K.P. Roche, Phys. Rev. Lett. 64 (1990) 2304.
    [IV-15] S. S. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64 (1990) 2304.
    [IV-16] M. Z. Lin, C. H. Lee, K. L. Yu, J. C. A. Huang, W. C. Chen, Physica B 345 (2004) 213.
    [IV-17] K. Zhang, T. Kai, T. Zhao, H. Fujiwara, G. J. Mankey, J. Appl. Phys. 89 (2001) 6814.
    [IV-18] S. Colis, A. D. Dinia, C. Mény, P. Panissod, C. Ulhaq-Bouillet, G. Schmerber, Phys. Rev. B 62 (2000) 11709.
    [IV-19] O. Hjorstam, J. Trygg, J. M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B 53 (1996) 9204.
    [IV-20] F. Radu, V. K. Ignatovich, Physica B 267 (1999) 175.
    [IV-21] K. L. Yu, C. H. Lee, J. C. A. Huang, H. C. Su, G. P. Felcher, Chinese J. Phys. 40 (2002) 616.
    [IV-22] S. S. Dhesi, H. A. Dürr, E. Dudzik, G. van der Laan, N. B. Brooks, Phys. Rev. B 61 (2000) 6866.
    [IV-23] http://www.ncnr.nist.gov/resources/n-lengths/.
    [IV-24] L. Dobrzynski, and K. Blinowski, “Neutrons and Solid State Physics”, (Ellis Horwood, 1994).
    [IV-25] H. E. Hsu, and T. B. Wu, “The principle of X-ray diffraction and Analysis on the structures of materials”, (Chinese Society for Material Science, 2004)
    [IV-26] http://henke.lbl.gov/optical_constants/asf.html
    [IV-27] M. Th. Rekveldt, Text. and Microstr. 11 (1989) 127.
    [IV-28] O. Halpern and T. Holstein, Phys. Rev. 59 (1941) 960.
    [IV-29] T. Aign, P. Meyer, S. Lemerle, J. P. Jamet, J. Ferre, V. Mathet, C. Chappert, J. Gierak, C. Vieu, F. Rousseaux, H. Launois, and H. Bernas, Phys. Rev. Lett. 81 (1998) 8656.
    [IV-30] P. T. Por, W. H. Kraan, M. Th. Rekveldt, Nucl. Instrum. Meth. A 300 (1991) 35.
    [IV-31] M. Th. Rekveldt, and F. J. van Schaik, Nucl. Instru. Meth. 166 (1979) 277.
    [IV-32] S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, H. Eckerlebe, and N. H. van Dijk, Phys. Rev. B 69 (2004) 134417.

    □ Chapter V
    [V-1] http://www.kfa-juelich.de/iff/wns_lap.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE