研究生: |
辛璧宇 Hsin, Pi-Yu |
---|---|
論文名稱: |
P型背接式網印太陽能電池 Screen-printed Interdigitated Back Contact Solar Cells on Cz P-type Wafer |
指導教授: |
甘炯耀
Gan, Jon-Yiew |
口試委員: |
黃金花
Huang, Jin-Hua 黃振昌 Hwang, Jenn-Chang 黃文瑞 Huang, Wen-Rui 顏光甫 Yen, Kuang-Fu |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 背接式 、網印 、P型 、矽晶太陽能電池 |
外文關鍵詞: | IBC, screen printed, P-type, silicon solar cell |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背接式太陽能電池效率比傳統矽晶太陽能電池高上不少,但其製造成本複雜又昂貴,使其無法成為市場主流。在本研究中,我們使用目前市場上技術成熟且大量使用成本又較低廉的絲網印刷及Cz-P型矽晶片,進行指叉背接型太陽能電池(IBC)的製造和特性分析。此實驗製造出來的太陽能電池為10平方公分,轉換效率為20.08%,其中,開路電壓為645mV,短路電流密度40.15 mA / cm2,填充因子77.51%。此外,電池性能也通過基於所測量的電學性質的分析計算而得到驗證。從我們的分析計算的結果看來,採用適當的射極設計,絲網印刷的p-Si指叉背接型太陽能電池能達到680mV的開路電壓和22%的轉換效率。在本實驗中,背面接觸鈍化(PERC)電池可以獲得與絲網印刷的IBC電池相當的效率,IBC電池可以藉由改善背面的射極的飽和電流來提升效率,PERC電池也可以有相同的效果只要前表面射極的改進不影響電池的光吸收。
In this study, we report on the fabrication and analytical characterization of the screen-printed p-Si interdigitated back contact (IBC) cells with the conversion efficiency of 20.08%, with open-circuit voltage of 645 mV, short-circuit current density of 40.15 mA/cm2, and fill factor of 77.51%. The cell performance has also been confirmed with the analytical calculation based on the electrical properties measured. It also shows that, with the proper emitter design, the open-circuit voltage of 680 mV and conversion efficiency of 22% is possibly attainable for the screen-printed p-Si IBC cell. Compared with the screen-printed IBC cells, the passivated emitter and rear “contact” (PERC) cell may perform equivalently well, provided that any improvement on Seff of the front surface does not compromise the light absorption and emitter resistance of the cell.
[1] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, "Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3," Progress in Photovoltaics, vol. 16, pp. 461-466, Sep 2008.
[2] T. Dullweber, S. Gatz, H. Hannebauer, T. Falcon, R. Hesse, J. Schmidt, et al., "Towards 20% efficient large-area screen-printed rear-passivated silicon solar cells," Progress in Photovoltaics, vol. 20, pp. 630-638, Sep 2012.
[3] B. Hallam, A. Uruena, R. Russell, M. Aleman, M. Abbott, C. Dang, et al., "Efficiency enhancement of i-PERC solar cells by implementation of a laser doped selective emitter," Solar Energy Materials and Solar Cells, vol. 134, pp. 89-98, Mar 2015.
[4] A. Metz, D. Adler, S. Bagus, H. Blanke, M. Bothar, E. Brouwer, et al., "Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology," Solar Energy Materials and Solar Cells, vol. 120, pp. 417-425, Jan 2014.
[5] (2015) Trina Solar sets 21.25% multicrystalline cell efficiency record. PVTECH. Available: https://www.pv-tech.org/news/trina-solar-sets-new-21.25-multicrystalline-cell-efficiency-record
[6] (2016) SolarWorld hits 22% PERC efficiency. PV MAGAZINE. Available: https://www.pv-magazine.com/2016/01/14/solarworld-hits-22-perc-efficiency_100022790/
[7] (2016) Trina sets new mono PERC cell efficiency record of 22.61%. PVTECH. Available: https://www.pv-tech.org/news/trina-sets-new-mono-perc-cell-efficiency-record-of-22.61
[8] C. Honsberg and S. Bowden. PVEducation - Absorption Coefficient. Available: https://www.pveducation.org/
[9] M. A. Green, Solar Cells : Operating Principle, Technology, and System Application. Prentice-Hall, 1982.
[10] W. Shockley and W. T. Read, "Statistics of the recombinations of holes and electrons," Physical Review, vol. 87, pp. 835-842, 1952.
[11] R. N. Hall, "Electron-hole recombination in germanium," Physical Review, vol. 87, pp. 387-387, 1952.
[12] D. K. schroder, Semiconductor material and device characterization 3rd edition.: Wiley & Sons, 2006.
[13] M. Hermle, F. Granek, O. Schultz-Wittmann and S. W. Glunz, "Shading effects in back-junction back-bontacted silicon solar cells," in Pvsc: 2008 33rd IEEE Photovoltaic Specialists Conference, Vols 1-4, ed, 2008, p. 1666.
[14] E. Van Kerschaver and G. Beaucarne, "Back-contact solar cells: A review," Progress in Photovoltaics, vol. 14, pp. 107-123, Mar 2006.
[15] R. J. Schwartz and M. D. Lammert, "Silicon solar cells for high concentration applications," in 1975 International Electron Devices Meeting, 1975, pp. 350-352.
[16] R. M. Swanson, "Point contact solar cells-modeling and experiment," Solar Cells, vol. 17, pp. 85-118, Mar 1986.
[17] R. Keding, D. Stuwe, M. Kamp, C. Reichel, A. Wolf, R. Woehl, et al., "Co-diffused back-contact back-junction silicon solar cells without gap regions," IEEE Journal of Photovoltaics, vol. 3, pp. 1236-1242, Oct 2013.
[18] M. Dahlinger, B. Bazer-Bachi, T. C. Roder, J. R. Kohler, R. Zapf-Gottwick, and J. H. Werner, "Laser-doped back-contact solar cells," IEEE Journal of Photovoltaics, vol. 5, pp. 812-818, May 2015.
[19] H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garin, et al., "Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency," Nature Nanotechnology, vol. 10, pp. 624-629, Jul 2015.
[20] D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, et al., "SunPower’s Maxeon Gen III solar cell: high efficiency and energy yield," 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 0908-0913, 2013.
[21] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, et al., "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell," IEEE Journal of Photovoltaics, vol. 4, pp. 1433-1435, Nov 2014.
[22] E. Franklin, K. Fong, K. McIntosh, A. Fell, A. Blakers, T. Kho, et al., "Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell," Progress in Photovoltaics: Research and Applications, vol. 24, pp. 411-427, 2016.
[23] (2017) Trina Solar achieves 24.13% conversion efficiency for IBC solar cell. PVTECH. Available: https://www.pv-tech.org/news/trina-solar-achieves-24.13-conversion-efficiency-for-ibc-solar-cell
[24] D. D. Smith, P. Cousins, S. Westerberg, R. De Jesus-Tabajonda, G. Aniero, and Y. C. Shen, "Toward the practical limits of silicon solar cells," IEEE Journal of Photovoltaics, vol. 4, pp. 1465-1469, Nov 2014.
[25] R. Woehl, M. Rudiger, D. Biro, and J. Wilde, "All-screen-printed back-contact back-junction silicon solar cells with aluminum-alloyed emitter and demonstration of interconnection of point-shaped metalized contacts," Progress in Photovoltaics, vol. 23, pp. 226-237, Feb 2015.
[26] J. Dong, L. Tao, Y. Zhu, Z. Yang, Z. Xia, R. Sidhu, et al., "High-efficiency full back contacted cells using industrial processes," IEEE Journal of Photovoltaics, vol. 4, pp. 130-133, 2014.
[27] G. Scardera, D. Inns, G. Wang, S. Dugan, J. Dee, T. Dang, et al., "All-screen-printed dopant paste interdigitated back contact solar cell," Energy Procedia, vol. 77, pp. 271-278, 2015.
[28] S. Rein, Lifetime Spectroscopy : A Method of Defect Characterization in Silicon for Photovoltaic Applications. Springer, 2005.
[29] S. Instrument., "WCT-120 photoconductance lifetime tester user manual v3.0," Sinton Consulting, 2013.
[30] R. M. S. D Kane, "Measurement of the emitter saturation current by a contactless photoconductivity decay method (silicon solar cells)," Proceedings of the 18th IEEE Photovoltaic Specialists Conference, pp. 578-583, 1985.
[31] D. L. Meier and D. K. Schroder, "Contact resistance - its measurement and relative importance to power loss in a solar-cell," IEEE Transactions on Electron Devices, vol. 31, pp. 647-653, 1984.
[32] M. A. Green, "Accuracy of analytical expressions for solar-cell fill factors," Solar Cells, vol. 7, pp. 337-340, 1982.
[33] P. Magnone, M. Debucquoy, D. Giaffreda, N. Posthuma, and C. Fiegna, "Understanding the Influence of Busbars in Large-Area IBC Solar Cells by Distributed SPICE Simulations," IEEE Journal of Photovoltaics, vol. 5, pp. 552-558, Mar 2015.
[34] C. Kranz, J. H. Petermann, T. Dullweber, and R. Brendel, "Simulation-based efficiency gain analysis of 21.2%-efficient screen-printed PERC solar cells," Energy Procedia, vol. 92, pp. 109-115, 2016.
[35] R. A. Sinton, A. Cuevas, and M. Stuckings, "Quasi-steady-state photoconductance, a new method for solar cell material and device characterization," Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996, pp. 457-460, 1996.
[36] C. Honsberg and S. Bowden. PVEducation - Surface Recombination. Available: https://www.pveducation.org/
[37] P. Lolgen, C. Leguijt, J. A. Eikelboom, R. A. Steeman, W. C. Sinke, L. A. Verhoef, et al., "Aluminium back-surface field doping profiles with surface recombination velocities below 200 cm/s," Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993, pp. 236-242, 1993.
[38] U. Romer, R. Peibst, T. Ohrdes, B. Lim, J. Krugener, E. Bugiel, et al., "Recombination behavior and contact resistance of n(+) and p(+) poly-crystalline Si/mono-crystalline Si junctions," Solar Energy Materials and Solar Cells, vol. 131, pp. 85-91, Dec 2014.
[39] A. D. Upadhyaya, Y.-W. Ok, E. Chang, V. Upadhyaya, K. Madani, K. Tate, et al., "Ion-implanted screen-printed n-type solar cell with tunnel oxide passivated back contact," IEEE Journal of Photovoltaics, vol. 6, pp. 153-158, Jan 2016.
[40] Christian Reichel, Filip Granek, Martin Hermle, and a. S. W. Glunz, "Short-circuit current losses in back-contacted back–junction si solar cells: experiment and simulation of the charge collection probability," IEEE Journal of Photovoltaics, vol. 3, pp. 217-223, Jan 2013.
[41] C. Reichel, F. Granek, M. Hermle, and S. W. Glunz, "Investigation of electrical shading effects in back-contacted back-junction silicon solar cells using the two-dimensional charge collection probability and the reciprocity theorem," Journal of Applied Physics, vol. 109, p. 024507, 2011.
[42] M. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, "High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters," Progress in Photovoltaics: Research and Applications, vol. 14, pp. 135-144, 2006.
[43] Z. J. Wang, P. Y. Han, H. Y. Lu, H. Q. Qian, L. P. Chen, Q. L. Meng, et al., "Advanced PERC and PERL production cells with 20.3% record efficiency for standard commercial p-type silicon wafers," Progress in Photovoltaics, vol. 20, pp. 260-268, May 2012.
[44] C. Honsberg and S. Bowden. PVEducation - Double diode model. Available: https://www.pveducation.org/
[45] J. Greulich, M. Glatthaar, and S. Rein, "Fill factor analysis of solar cells' current-voltage curves," Progress in Photovoltaics, vol. 18, pp. 511-515, Nov 2010.
[46] E. Urrejola, K. Peter, H. Plagwitz, and G. Schubert, "Al-Si alloy formation in narrow p-type Si contact areas for rear passivated solar cells," Journal of Applied Physics, vol. 107, Jun 2010.