研究生: |
林婉琪 Lin, Wan-Chi |
---|---|
論文名稱: |
裝載高分子氣胞/載藥液胞的單核白血球於超音波操控藥物傳遞之評估 Development of bubble/vesicle-engulfed monocytes for ultrasound-mediated drug delivery |
指導教授: |
邱信程
Chiu, Hsin-Cheng |
口試委員: |
江啟勳
Chiang, Chi-Shiun 葉秩光 Yeh, Chih-Kuang |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 高分子氣胞 、高分子液胞 、超音波 、藥物釋放 、腫瘤治療 |
外文關鍵詞: | polymer bubbles, polymer vesicles, ultrasound, drug delivery, tumor therapy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了克服藥物不易傳輸至腫瘤缺氧區的限制,本研究企圖利用具缺氧趨化性的巨噬細胞作為藥物傳遞的媒介,開發出結合超音波影像追蹤、超音波控制藥物釋放及癌症治療的多功能型藥物傳遞系統。分別利用脂質含量15與25 mol %的共聚合高分子poly(acrylic acid-co-distearin acrylate) (poly(AAc-co-DSA)製備奈米級高分子液胞與氣胞。高分子液胞不僅具備穩定的結構而且能夠包覆大量的抗癌藥物doxorubicin(DOX)(藥物含量可達22.5 wt %),於無外部(超聲波)刺激時其藥物洩漏量極低。另外,高分子氣胞經證實具有長時間的超音波顯影功能與強烈超聲波對比訊號。巨噬細胞(RAW 264.7)胞飲高分子氣胞與載藥液胞後可維持高存活率達24小時,同時提供強烈的超聲波對比訊號有利於追蹤藥物的傳遞情形。值得一提的是透過施加聚焦式超音波(focused ultrasound)破壞氣胞可產生慣性穴蝕(inertial cavitation),產生震波衝擊載藥液胞後進一步促進藥物釋放。於細胞毒性的測試證實,將聚焦式超聲波處理後之裝載高分子氣/液胞的巨噬細胞分別與TRAMP-C1 cells及HeLa cells共同培養,從巨噬細胞釋放出的藥物能有效地毒殺癌細胞造成細胞死亡。
我們接著利用取自老鼠骨髓細胞分化的單核白血球(bone-marrow derived monocyte)作為裝載高分子氣/液胞的載體。經實驗證實含有高分子氣/液胞的單核白血球展現出與巨噬細胞一致的藥物傳遞功能,亦可藉由聚焦式超聲波的施予將藥物從單核白血球釋放至目標癌細胞。分析單核白血球遷移能力(migration)的結果顯示,單核白血球胞飲高分子氣/液胞後,於模擬腫瘤周遭環境的實驗中仍保有tumor-homing 的能力,故細胞遷移數高於僅利用血清濃度梯度所測得之細胞遷移數。此外,於缺氧(hypoxia)環境中單核白血球仍表現出往腫瘤區域遷移的特性。未來將進一步評估此多功能性細胞型診治系統於動物體內之腫瘤組織的超音波顯影與治療效果。
We proposed an innovative strategy of developing the multifunctional cell-based cancer theranostic systems by employing the tumor-homing macrophages (RAW 267.4) as a vehicle capable of simultaneously carrying doxorubicin (DOX)-loaded polymeric vesicles and polymer bubbles to the target cells and releasing the therapeutic payload via the focused ultrasound treatment. The lipid-containing copolymers, poly(acrylic acid-co-distearin acrylate) (poly(AAc-co-DSA)), with DSA content of 15 and 25 mol% were used respectively as the materials to fabricate the nano-scaled polymer vesicles and polymer bubbles. The results of flow cytometry and confocal laser scanning microscopy clearly demonstrate that the drug-loaded vesicles and polymer bubbles can be effectively engulfed into macrophages via phagocytosis. Taking advantage of the dense lipid-rich membrane structure, the DOX-encapsulated polymeric vesicles after being internalized by macrophages strongly prevent the drug from leakage, thereby allowing the high activity and viability of macrophages at least for 24 h. Moreover, the polymer bubbles within the macrophages still exhibit the long-term profound ultrasound imaging contrast. Interestingly enough, through the focused ultrasound-triggered disruption of polymer bubbles, the generated inertial cavitation most likely impairs the structure of DOX-loaded vesicles, thus facilitating the drug liberation. The in vitro cytotoxicity data further confirm that while being subjected to focused ultrasound treatment and then incubated with either TRAMP-C1 or HeLa cells, the payload-containing macrophages displayed a pronounced anticancer efficacy to inhibit cell proliferation. On the other hand, we found that bone-marrow derived monocytes also served as a carrier for delivery of drug-loaded vesicles and polymer bubbles to tumor sites similar to the above macrophages(RAW 267.4). It is noteworthy that these monocytes carrying both drug-loaded vesicles and polymer bubbles exhibit better capability of migrating toward tumor cells in the simulated tumoral environment medium than those under the serum concentration gradient conditions. This demonstrates that they still retain tumor-homing nature and can be exploited as a promising candidate for the active delivery of therapeutics and imaging contrast agents.
[1] Min HS, Kang E, Koo H, Lee J, Kim K, Park RW, et al. Gas-generating polymeric microspheres for long-term and continuous in vivo ultrasound imaging. Biomaterials. 2012;33:936-44.
[2] Kawai Y, Ajima K, Nagai T, Kaidoh M, Ohhashi T. Real-time imaging of the lymphatic channels and sentinel lymph nodes of the stomach using contrast-enhanced ultrasonography with Sonazoid in a porcine model. Cancer Sci. 2011;102:2073-81.
[3] Sirsi SR, Hernandez SL, Zielinski L, Blomback H, Koubaa A, Synder M, et al. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release. 2012;157:224-34.
[4] Bolognesi M, Quaglio C, Bombonato G, Gaiani S, Pesce P, Bizzotto P, et al. Splenic Doppler Impedance Indices Estimate Splenic Congestion in Patients with Right-Sided or Congestive Heart Failure. Ultrasound Med Biol. 2012;38:21-7.
[5] Huang QH, Lee SY, Liu LZ, Lu MH, Jin LW, Li AH. A robust graph-based segmentation method for breast tumors in ultrasound images. Ultrasonics. 2012;52:266-75.
[6] Hundt W, Steinbach S, O'Connell-Rodwell CE, Bednarski MD, Guccione S. The effect of high intensity focused ultrasound on luciferase activity on two tumor cell lines in vitro, under the control of a CMV promoter. Ultrasonics. 2009;49:312-8.
[7] de Smet M, Heijman E, Langereis S, Hijnen NM, Grull H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: An in vivo proof-of-concept study. J Control Release. 2011;150:102-10.
[8] Wang CH, Kang ST, Lee YH, Luo YL, Huang YF, Yeh CK. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials. 2012;33:1939-47.
[9] Gao Z, Kennedy AM, Christensen DA, Rapoport NY. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics. 2008;48:260-70.
[10] Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release. 2009;138:268-76.
[11] Rapoport N, Gao ZG, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer I. 2007;99:1095-106.
[12] Omata D, Negishi Y, Hagiwara S, Yamamura S, Endo-Takahashi Y, Suzuki R, et al. Bubble Liposomes and Ultrasound Promoted Endosomal Escape of TAT-PEG Liposomes as Gene Delivery Carriers. Mol Pharmaceut. 2011;8:2416-23.
[13] Lentacker I, Geers B, Demeester J, De Smedt SC, Sanders NN. Design and Evaluation of Doxorubicin-containing Microbubbles for Ultrasound-triggered Doxorubicin Delivery: Cytotoxicity and Mechanisms Involved. Mol Ther. 2010;18:101-8.
[14] du Toit LC, Govender T, Pillay V, Choonara YE, Kodama T. Investigating the Effect of Polymeric Approaches on Circulation Time and Physical Properties of Nanobubbles. Pharm Res-Dord. 2011;28:494-504.
[15] Krupka TM, Solorio L, Wilson RE, Wu HP, Azar N, Exner AA. Formulation and Characterization of Echogenic Lipid-Pluronic Nanobubbles. Mol Pharmaceut. 2010;7:49-59.
[16] Ngai T, Xing XC, Jin F. Depletion Attraction between a Polystyrene Particle and a Hydrophilic Surface in a Pluronic Aqueous Solution. Langmuir. 2008;24:13912-7.
[17] Ting CY, Fan CH, Liu HL, Huang CY, Hsieh HY, Yen TC, et al. Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials. 2012;33:704-12.
[18] Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature. 2003;423:153-6.
[19] Lentacker I, De Smedt SC, Sanders NN. Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter. 2009;5:2161-70.
[20] Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliver Rev. 2012;64:640-65.
[21] Chen W, Meng FH, Cheng R, Zhong ZY. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. J Control Release. 2010;142:40-6.
[22] Huang YF, Chiang WH, Tsai PL, Chern CS, Chiu HC. Novel hybrid vesicles co-assembled from a cationic lipid and PAAc-g-mPEG with pH-triggered transmembrane channels for controlled drug release. Chem Commun. 2011;47:10978-80.
[23] Staruch R, Chopra R, Hynynen K. Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperther. 2011;27:156-71.
[24] Chen JY, Glaus C, Laforest R, Zhang Q, Yang MX, Gidding M, et al. Gold Nanocages as Photothermal Transducers for Cancer Treatment. Small. 2010;6:811-7.
[25] You J, Zhang GD, Li C. Exceptionally High Payload of Doxorubicin in Hollow Gold Nanospheres for Near-Infrared Light-Triggered Drug Release. Acs Nano. 2010;4:1033-41.
[26] Lin CY, Liu TM, Chen CY, Huang YL, Huang WK, Sun CK, et al. Quantitative and qualitative investigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from vasculature in mouse tumors. J Control Release. 2010;146:291-8.
[27] Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56:4509-15.
[28] Hockel M, Vaupel P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer I. 2001;93:266-76.
[29] Teicher BA. Hypoxia and Drug-Resistance. Cancer Metast Rev. 1994;13:139-68.
[30] Liang BC. Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines. J Neuro-Oncol. 1996;29:149-55.
[31] Burke AR, Singh RN, Carroll DL, Wood JCS, D'Agostino RB, Ajayan PM, et al. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials. 2012;33:2961-70.
[32] Wang XQ, Wei F, Liu AJ, Wang L, Wang JC, Ren L, et al. Cancer stem cell labeling using poly(L-lysine)-modified iron oxide nanoparticles. Biomaterials. 2012;33:3719-32.
[33] Watanabe K, Tsuchiya Y, Kawaguchi Y, Sawada S, Ayame H, Akiyoshi K, et al. The use of cationic nanogels to deliver proteins to myeloma cells and primary T lymphocytes that poorly express heparan sulfate. Biomaterials. 2011;32:5900-5.
[34] Huang HN, Rajanbabu V, Pan CY, Chan YL, Hui CF, Chen JY, et al. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5. Biomaterials. 2011;32:6804-14.
[35] Choi J, Kim HY, Ju EJ, Jung J, Park J, Chung HK, et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials. 2012;33:4195-203.
[36] White C, Kambe T, Fulcher YG, Sachdev SW, Bush AI, Fritsche K, et al. Copper transport into the secretory pathway is regulated by oxygen in macrophages. J Cell Sci. 2009;122:1315-21.
[37] Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliver Rev. 2011;63:623-39.
[38] Gan DJ, Lyon LA. Synthesis and protein adsorption resistance of PEG-modified poly(N-isopropylacrylamide) core/shell microgels. Macromolecules. 2002;35:9634-9.
[39] Hood E, Gonzalez M, Strom J, VanAuker M. Ultrasound enhancement of drug release across non ionic surfactant vesicle membranes. Conf Proc IEEE Eng Med Biol Soc. 2004;5:3527-30.
[40] Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery--a general review. Expert Opin Drug Del. 2004;1:37-56.
[41] Escoffre JM, Piron J, Novell A, Bouakaz A. Doxorubicin Delivery into Tumor Cells with Ultrasound and Microbubbles. Mol Pharmaceut. 2011;8:799-806.