研究生: |
魏 筠 Wei, Yun |
---|---|
論文名稱: |
二氧化錫系觸媒應用於二氧化碳電化學還原成一氧化碳之選擇性提升 Selectivity Enhancement of CO2 Electrochemical Reduction to CO on Tin(IV) Oxide-based Catalysts |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
陳翰儀
Chen, Han-Yi 潘詠庭 Pan, Yung-Tin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 二氧化碳電化學還原 、二氧化錫 、二氧化鈦 、一氧化碳 、選擇性 、還原機制 |
外文關鍵詞: | CO2 electrochemical reduction, Tin oxide, Titanium oxide, Carbon monoxide, Selectivity, Reduction mechanism |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
產物的選擇性一直是二氧化碳電化學還原觸媒所面臨的問題。在眾多種類電化學觸媒中,二氧化錫相較於其他金屬與金屬氧化物觸媒具有低成本、製備簡單與產氫過電位較高的優點,而在中性電解液中二氧化錫觸媒上二氧化碳還原所能生成的產物有甲酸根與一氧化碳。其中一氧化碳因為可與氫氣生成經濟價值較高的甲醇、分離容易且過電位較低而具有優勢,因此本研究欲探討如何提高二氧化錫對於一氧化碳的產物選擇性。
本研究主要分為兩個部分: 第一部分為探討不同的水熱合成參數及不同電解電位對於二氧化錫上二氧化碳還原產物選擇性的影響,並試著找出最佳化參數以得到最高的一氧化碳產率與選擇性。結果顯示在較正電位下,降低晶粒大小能夠提高一氧化碳之選擇性。另外,本研究也根據X射線吸收光譜(XAS)以及X射線電子能譜儀(XPS)之實驗結果嘗試提出二氧化碳在二氧化錫上的還原反應途經。第二部分則是藉由在二氧化錫中加入二氧化鈦達成進一步降低晶粒大小的目標。透過水熱法所製備類似內核-外殼結構之二氧化錫-金紅石相二氧化鈦觸媒在-0.86 V(RHE)電位下,其一氧化碳產率可提高至42%,一氧化碳選擇性也能夠進一步提高至二氧化錫觸媒之兩倍。
Product selectivity is a challenge in the electrochemical reduction of CO2. Among various catalysts, tin oxide is one of the hottest catalysts for the electrochemical reduction of CO2 due to its low cost, easy synthesis and high hydrogen evolution overpotential. Moreover, carbon monoxide and formate are the only two products of CO2 reduction when tin oxide is employed, which can be easily separated by the solubility in water. In this thesis, a new way is demonstrated to increase the yield and selectivity of carbon monoxide in the electrochemical reduction of CO2 since carbon monoxide and hydrogen are synthesis gas for methanol production, which show a high economic value.
In the first part of this thesis, the relation between synthesis parameters and the selectivity of CO under different applied potentials is investigated. The result shows that under less negative potentials, reducing the crystal size of SnO2 leads to increase the CO selectivity. The reduction pathways of CO2 on SnO2 based on the X-ray adsorption spectroscopy and x-ray photoelectron spectroscopy data are reasonably proposed. In the second part, the crystal size of SnO2 is further reduced by the synthesis of the core-shell-like SnO2-rutile TiO2 catalysts through the hydrothermal method. A relatively high Faradaic efficiency over 42% for the CO formation and two folds of CO selectivity in comparison with the case using the SnO2 catalyst can be achieved at -0.86 V (RHE).
[1]胡啟章, 電化學原理與方法. 2012: 五南圖書..
[2] Bagotsky, V.S., Fundamentals of Electrochemistry. 2006: John Wiley & Sons, Inc..
[3] Kumar, B., et al., Photochemical and photoelectrochemical reduction of CO2. Annual review of physical chemistry, 2012. 63: p. 541-569.
[4] Newsome, D.S., The water-gas shift reaction. Catalysis Reviews Science and Engineering, 1980. 21(2): p. 275-318.
[5] Qiao, J., et al., A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev, 2014. 43(2): p. 631-75.
[6] Mori, K., H. Yamashita, and M. Anpo, Photocatalytic reduction of CO 2 with H2o on various titanium oxide photocatalysts. Rsc Advances, 2012. 2(8): p. 3165-3172.
[7] Agarwal, A.S., et al., The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem, 2011. 4(9): p. 1301-1310.
[8] Zhao, C. and J. Wang, Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chemical Engineering Journal, 2016. 293: p. 161-170.
[9] Wu, J., et al., CO2 reduction: from the electrochemical to photochemical approach. Advanced Science, 2017. 4(11): p. 1700194.
[10] Medford, A.J., et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015. 328: p. 36-42.
[11] Daiyan, R., et al., Liquid Hydrocarbon Production from CO2: Recent Development in Metal‐Based Electrocatalysis. ChemSusChem, 2017. 10(22): p. 4342-4358.
[12] Feaster, J.T., et al., Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catalysis, 2017. 7(7): p. 4822-4827.
[13] Gu, J., et al., Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction. Angew Chem Int Ed Engl, 2018. 57(11): p. 2943-2947.
[14] Wang, S., J. Wang, and H. Xin, Insights into electrochemical CO 2 reduction on tin oxides from first-principles calculations. Green Energy & Environment, 2017. 2(2): p. 168-171.
[15] Hori, Y., A. Murata, and R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989. 85(8): p. 2309-2326.
[16] Fu, Y., et al., Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel. Applied Energy, 2016. 175: p. 536-544.
[17] Hori, Y. and S. Suzuki, Electrolytic reduction of bicarbonate ion at a mercury electrode. Journal of The Electrochemical Society, 1983. 130(12): p. 2387-2390.
[18] Murata, A. and Y. Hori, Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bulletin of the Chemical Society of Japan, 1991. 64(1): p. 123-127.
[19] Singh, M.R., et al., Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. J Am Chem Soc, 2016. 138(39): p. 13006-13012.
[20] Ito, K., T. Murata, and S. Ikeda, Electrochemical Reduction of Carbon Dioxide to Organic Compounds. 名古屋工業大学学報, 1976(27): p. p209-214.
[21] Hori, Y., K. Kikuchi, and S. Suzuki, Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chemistry Letters, 1985. 14(11): p. 1695-1698.
[22] Hori, Y., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochimica Acta, 1994. 39(11-12): p. 1833-1839.
[23] Li, C.W. and M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc, 2012. 134(17): p. 7231-4.
[24] Spataru, N., et al., Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond. Journal of applied electrochemistry, 2003. 33(12): p. 1205-1210.
[25] Chen, Y. and M.W. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc, 2012. 134(4): p. 1986-9.
[26] Lee, S., et al., Alkaline CO2 Electrolysis toward Selective and Continuous HCOO– Production over SnO2 Nanocatalysts. The Journal of Physical Chemistry C, 2015. 119(9): p. 4884-4890.
[27] Pourbaix, M., Atlas of electrochemical equilibria in aqueous solution. NACE, 1974. 307.
[28] Daiyan, R., et al., Highly Selective Reduction of CO2 to Formate at Low Overpotentials Achieved by a Mesoporous Tin Oxide Electrocatalyst. ACS Sustainable Chemistry & Engineering, 2018. 6(2): p. 1670-1679.
[29] Lam, E. and J.H.T. Luong, Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 2014. 4(10): p. 3393-3410.
[30] Bashir, S., et al., Electrocatalytic reduction of carbon dioxide on SnO2/MWCNT in aqueous electrolyte solution. Journal of CO2 Utilization, 2016. 16: p. 346-353.
[31] Yu, J., et al., Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity. Applied Catalysis A: General, 2017. 545: p. 159-166.
[32] Weng, L.-C., A.T. Bell, and A.Z. Weber, Modeling Gas-Diffusion Electrodes for CO2 Reduction. Physical Chemistry Chemical Physics, 2018.
[33] Wang, Z., Sub-5 nm SnO2 Chemically Coupled Hollow Carbon Spheres for efficient co2 reduction. Journal of Materials Chemistry A, 2018. 6(41): p. 20121-20127.
[34] Liang, C., et al., High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles. Journal of Materials Chemistry A, 2018. 6(22): p. 10313-10319.
[35] Li, Q., et al., Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure. J Am Chem Soc, 2017. 139(12): p. 4290-4293..
[36] Li, F., et al., Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angewandte Chemie International Edition, 2017. 56(2): p. 505-509.
[37] Kumar, B., Reduced SnO2 Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO2‐into‐HCOOH Conversion. Angew Chem Int Ed Engl, 2017. 56(13): p. 3645-3649.
[38] Duan, X., et al., Metal-Free Carbon Materials for CO2 Electrochemical Reduction. Adv Mater, 2017. 29(41)..
[39] Wu, J., et al., Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS nano, 2015. 9(5): p. 5364-5371.
[40] Sharma, P.P., et al., Nitrogen‐doped carbon nanotube arrays for high‐efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angewandte Chemie International Edition, 2015. 54(46): p. 13701-13705.
[41] Xu, J., et al., Revealing the Origin of Activity in Nitrogen‐Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide. ChemSusChem, 2016. 9(10): p. 1085-1089.
[42] Wang, H., et al., Efficient Electrocatalytic Reduction of CO2 by Nitrogen‐Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO2 Refinery. Angewandte Chemie International Edition, 2017. 56(27): p. 7847-7852.
[43] Wang, H., et al., Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chemistry, 2016. 18(11): p. 3250-3256.
[44] Wu, J., et al., Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano letters, 2015. 16(1): p. 466-470.
[45] Sreekanth, N., et al., Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chemical Communications, 2015. 51(89): p. 16061-16064.
[46] Li, W., et al., Metal‐free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4. ChemSusChem, 2016. 9(6): p. 606-616.