簡易檢索 / 詳目顯示

研究生: 張淑頻
論文名稱: CNC工具機之雙設定點運動控制
Twin-Setting-Points Motion Control for CNC Machine Tools
指導教授: 雷衛台
Lei, Wei-Tai
口試委員: 吳隆庸
左培倫
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 44
中文關鍵詞: CNC工具機軌跡誤差
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出工具機雙設定點運動控制方法(Twin-Setting-Points Motion Control, TPMC),針對傳統軌跡誤差控制器無法清晰定義出不連續轉角處之軌跡誤差及造成轉角後過切之缺點,藉由導入參考路徑模型,以每個即時加減速規劃所得出之設定路徑長度,計算出額外之參考路徑長度,插補器依此二路徑長度算出設定路徑上之設定點,以及設定路徑上額外之軌跡誤差參考點,此額外之軌跡誤差參考點被用於定義軌跡誤差,優點是,任何切線方向連續之單一路徑或是切線方向不連續轉角處之軌跡誤差,皆可清晰而且唯一地定義出,並可為之設計專用的軌跡誤差控制器,以有效地降低軌跡誤差量,且無過切現象。
    文中透過路徑模擬分析軌跡誤差控制器增益值之影響及得出最佳增益值,且針對切線方向不連續之轉角路徑提出漸進式可變增益值方法以避免轉角處產生過切現象,此方法可適用於所有轉角角度,此外也設計轉角自動減速機制,有效地提升軌跡精度。實機測試結果證實雙設定點運動控制方法可大幅降低軌跡誤差量及提升CNC工具機之加工精度。


    摘要 目錄 圖目錄 表目錄 1.前言 2.文獻回顧 2.1 工具機運動控制 2.1.1 前饋控制 2.1.2 交叉耦合控制 2.1.3 其他控制理論發展 2.2 軌跡誤差模型 2.3 研究動機與目的 3.雙設定點運動控制 3.1 基本運動控制原理 3.2 雙設定點運動控制原理 3.3 參考路徑模型分析 4.程式架構設計與實現 4.1 TPMC模組程式架構設計 4.2 TPMC模組內部程式實現 4.3 PCL模組程式實現 5.路徑模擬 5.1 影響軌跡精度相關參數 5.1.1 進給驅動系統動態參數 5.1.2 伺服控制迴路參數 5.2 連續路徑模擬 5.3 轉角路徑模擬 5.4 轉角過切現象解決方法 5.5 轉角軌跡精度改善方法 6.實機測試 6.1 系統鑑別 6.2 連續路徑測試 6.3 轉角路徑測試 7.結論 參考文獻

    [1] M. Tomizuka, “Zero phase error tracking algorithm for digital control”, ASME Journal of Dynamic Systems, Measurement, and Control 109 (1987) 65–68.
    [2] Weck, M. G., “Sharp corner tracking using the IKF control strategy”, Annals of CIRP 39 (1) (1990) 437–441.
    [3] O. Masory, “Improving contouring accuracy of NC/CNC systems with additional velocity feedforward loop”, ASME Journal of Engineering for Industry 108 (1986) 227–230.
    [4] Y. Koren, “Cross-coupled biaxial computer control for manufacturing systems”, ASME Journal of Dynamic Systems, Measurement, and Control 102 (1980) 265–272.
    [5] K. Srinivasan, P.K. Kulkarni, “Cross-coupled control of biaxial feed drive servomechanisms”, ASME Journal of Dynamic Systems, Measurement, and Control 112 (1990) 225–232.
    [6] Y. Koren, C.C. Lo, “Variable-gain cross-coupling controller for contouring”, Annals of the CIRP 40 (1991) 371–374.
    [7] S.S. Yeh, P.L. Hsu, “Theory and applications of the robust cross-coupled control design”, IEEE American Control Conference 1 (1997) 791–795.
    [8] Y. Koren, C.C. Lo, “Advanced controller for feed drives”, CIRP Annals - Manufacturing Technology 41 (2) (1992) 689–698.
    [9] J.H. Chin, T.C. Lin, “Cross-coupled precompensation method for the contouring accuracy of computer numerically controlled machine tools”, International Journal of Machine Tools and Manufacture 37 (7) (1997) 947–967.
    [10] H.C. Ho, J.Y. Yen, S.S. Lu, “A decoupled path-following control algorithm based upon the decomposed trajectory error”, International Journal of Machine Tools and Manufacture 39 (10) (1999) 1619–1630.
    [11] C.C. Lo, C.Y. Chung, “Tangential-contouring controller for biaxial motion control”, ASME Journal of Dynamic Systems, Measurement, and Control 121 (1999) 126–129.
    [12] G.T.-C. Chiu, M. Tomizuka, “Contouring control of machine tool feed drive systems: a task coordinate frame approach”, IEEE Transactions on Control Systems Technology 9 (1) (2001) 130–139.
    [13] H.Y. Chuang C.H. Liu, “A model-referenced adaptive control strategy for improving contour accuracy of multiaxis machine tools”, IEEE Transactions on Industry Applications 28 (1) (1992).
    [14] S.S. Yeh, P.L. Hsu, “A new approach to biaxial cross-coupled control”, Proceedings of the 2000 IEEE International Conference on Control Applications, (2000) 168–173.
    [15] M.Y. Cheng, C.C. Lee, “Motion controller design for contour following tasks based on real-time contour error estimation”, IEEE Transactions on Industrial Electronics 54 (3) (2007) 1686–1695.
    [16] 顏志宏, “Model-referenced contour control for CNC machine tools”, 碩士論文, 國立清華大學動力機械工程研究所 (1993).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE