簡易檢索 / 詳目顯示

研究生: 廖育豪
Liao, Yu-Hao
論文名稱: 比較鋯和鉭覆蓋層在鈷鐵硼薄膜上的硼擴散行為
Comparison of Diffusive Behavior of B in Zr and Ta Capping Layer on MgO/Co20Fe60B20 Thin Films
指導教授: 李志浩
Lee, Chih-Hao
口試委員: 于冠禮
Yu, Kuan-Li
朱鵬維
Chu, Peng-Wei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 96
中文關鍵詞: 磁阻式隨機存取記憶體鈷鐵硼擴散磁性穿隧接面極化中子反射
外文關鍵詞: MRAM, CoFeB, diffusion, MTJ, PNR
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CoFeB應用在磁紀錄媒體上普遍使用MgO作為電子絕緣穿隧層,經由後退火處理後會發生B堆積在MgO/CoFeB介面的現象,這會使電子同調穿隧效應變差,故阻止B往MgO擴散是個值得探討的問題。利用覆蓋層去吸附B是阻止B往MgO擴散的其中一個方法,直到目前為止,還沒有人在相同的製程條件下證實Zr覆蓋層是否比Ta更適合作為B的吸附劑,故本實驗探討在相同的CoFeB厚度、相同退火溫度,藉由改變退火時間、覆蓋層厚度、覆蓋層元素去影響 B擴散的行為。
    X光反射率顯示退火500℃,1小時的條件下,會明顯降低薄膜整體厚度和CoFeB介面粗糙度,增加CoFeB(CoFe)和覆蓋層的密度,特別是增加覆蓋層厚度到6.5 nm時,磁光科爾效應顯示CoFeB的矯頑力提升較多。X光光電子能譜顯示Fe、Co、Zr、Ta被還原的程度也最大。XRD顯示CoFe (002)的結晶化程度最強。推測是因退火使B從CoFeB分離至覆蓋層被氧化,導致CoFeB結晶化成緻密的CoFe B2 結構的多晶相。反映出退火0.5 ~ 1小時B擴散到覆蓋層的效率最高。退火1.5小時後,藉由縱深分析可證明Zr吸附B能力比Ta強,因ZrBx的形成焓比TaBx還要小,導致B擴散至Zr的表面濃度大約是擴散到Ta的2倍。可能的擴散機制是樣品在破真空前,退火使B藉由格隙擴散到Zr(Ta)層形成ZrBX(TaBx),但樣品破真空後有部分ZrBX被氧化形成BOx,TaBx則幾乎氧化。最後,利用極化中子反射率分析B在CoFe/MgO介面的分佈不會超過3 nm厚,代表CoFeB薄膜沉積越厚,離覆蓋層越遠的B越難被吸附。此外,CoFeB結晶化後的CoFe相也提升了磁性薄膜的磁化量。


    CoFeB is commonly used in magnetic recording media. MgO is commonly used as an electronic insulating tunneling layer. After post-annealing, B will accumulate on the MgO/CoFeB interface, which will make the electron coherent tunneling effect worse. Until now, no one has confirmed whether the Zr capping layer is more suitable than Ta as an adsorbent for preventing the diffusion of B to MgO. Therefore, this experiment explores the influence of B diffusion behavior by changing the annealing time, capping layer thickness, and capping layer elements. Under the condition of annealing for 1 h. The X-ray reflectivity shows that the overall thickness of the film and the roughness of the Ta(Zr)/CoFeB interface is significantly reduced, and the density of CoFeB (CoFe) and density of the capping layer are increased. Mangneto-optic Kerr effect measurement shows that thicker Ta(Zr) capping layer can increase coercivity of CoFeB. X-ray photoelectron spectroscopy shows that Fe, Co, Zr, and Ta are reduced to the great extent. XRD shows that CoFe (002) has the strongest degree of crystallization. It is presumed that the annealing caused B to be separated from CoFeB to the coating layer and oxidized, which resulted in the crystallization of CoFeB into a dense polycrystalline phase of CoFe B2 structure. Reflects that the efficiency of B diffusion to the cappinofg layer is the highest when annealing for 0.5~1 h. After annealing for 1.5 h, the depth analysis shows that Zr has a stronger ability to adsorb B than Ta. Because the enthalpy of formation of ZrBx is smaller than that of TaBx, the surface concentration of B diffused to Zr is about twice than that of Ta. Finally, by using polarized neutron reflectivity we confirmed the distribution of B on the CoFe/MgO interface is less than 3 nm. In addition, the thicker the CoFeB film is deposited, the more difficult for the B to be diffused into the capping layer. Furthermore, after annealing, the CoFe phase growth from the crystallization of CoFeB thin film gives rise to a higher magnetization.

    摘要 i Abstract ii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 磁性基本理論 2 1.2.1 磁性分類 2 1.2.2 磁穿隧接面(Magnetic Tunnel Junction, MTJ) 5 1.2.3 磁異向性(Magnetic Anisotropy) 5 1.2.4 磁晶異向性 6 1.2.5 垂直磁異向性(Perpendicular Magnetic Anisotropy, PMA) 9 1.3 MgO/CoFeB的特性 10 1.4 CoFeB的應用 13 1.5 文獻回顧與探討 16 1.5.1 覆蓋層元素對B擴散之影響 16 1.5.2 退火時間和溫度對B擴散之影響 18 1.6 研究動機 20 第二章 儀器原理與實驗方法 21 2.1濺鍍(sputtering) 21 2.1.1直流濺鍍(Direct Current Sputtering, DC) 23 2.1.2射頻濺鍍(Radio Frequency Sputtering, RF) 23 2.2 X光反射率(X-Ray Reflectivity, XRR) 24 2.2.1臨界角(Critical angle) 24 2.2.2薄膜厚度(Thickness) 27 2.3 X射線光電子能譜學(X-ray photoelectron spectroscopy, XPS) 28 2.3.1 X射線光電子能譜原理 28 2.3.2 電荷補償技術 28 2.3.3 縱深成分分佈分析(Depth profile) 29 2.4 X光吸收光譜(X-ray absorption spectroscopy, XAS) 34 2.4.1 X 光吸收光譜原理 34 2.4.2 X 光吸收近緣結構 (XANES) 35 2.4.3 延伸 X 光吸收精細結構 (EXAFS) 36 2.4.4 X 光吸收光譜常用的測量方法: 38 2.5 磁光科爾效應(Magneto-optic Kerr effect) 39 2.6 實驗步驟 42 2.6.1基板清洗 43 2.6.2 樣品製備 44 第三章 結果與討論 45 3.1 XRR 分析: 45 3.1.1 不同退火時間對覆蓋Zr層的樣品之影響: 45 3.1.2 不同退火時間對覆蓋Ta層的樣品之影響: 48 3.1.3 不同退火時間對相同厚度6.5 nm覆蓋層的影響 49 3.2 XRD分析 51 3.2.1 覆蓋層厚度、種類和退火時間對CoFe序化度的影響 51 3.2.2覆蓋層厚度、種類和退火時間對CoFe序化度的影響 52 3.3 MOKE磁性分析 54 3.3.1 覆蓋層厚度、種類和退火時間變化對矯頑力的影響 54 3.3.2 覆蓋層種類和退火時間變化對矯頑力的影響 56 3.4 XAS分析結果: 59 3.4.1 未退火時Fe、Co、B的L3-edge 分析 59 3.4.2 覆蓋層2.3 nm 的 Fe、Co L3-edge、B K-edge 分析 62 3.4.3 覆蓋層6.5 nm 的 Fe、Co L3-edge、B K-edge 分析 64 3.4.4 覆蓋6.5 nm Ta和Zr的Fe K-edge XANES 分析 66 3.5 XPS分析結果 69 3.5.1 Zr/CoFeB//MgO和Ta/CoFeB//MgO樣品成分隨退火時間改變的縱深分析 69 3.5.2 Zr/CoFeB//MgO和Ta/CoFeB//MgO樣品各成分隨退火時間改變的化學位移 72 3.6 PNR分析結果 77 第四章 總結與未來展望 84 4.1總結 84 4.2未來展望 88 引用文獻 90 附錄 94

    [1] http://www.mwrf.net/tech/basic/2016/19538.html
    [2] Y. Yan, C. Lu, HQ. Tu, XY. Lu, WQ. Liu, JL. Wang, L. Ye, I. Will, B. Kuerbanjiang, VK. Lazarov, J. Wu, J. Wong, B. You, J. Du, R. Zhang and YB. Xu, AIP Advance 6 (2016) 095011
    [3] Kittel's Introduction to Solid State Physics
    [4] P. Nawrocki, J. Kanak, M. Wojcik and T. Stobiecki, Journal of Alloys and Compounds 741 (2018) 775-780
    [5] D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, (2005) 092502.
    [6] Z. Diao, D. Apalkov, M. Pakala, A. Panchula, Y. Ding and Y. Huai, Appl. Phys. Lett. 87 (2005) 232502.
    [7] H. Kubota, A. Fukushima, Y. Ohtani, S. Yuasa, K. Ando, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe and Y. Suzuki, Jpn. J. Appl. Phys. 44, (2005) L1237
    [8] 李明道,各式記憶體簡介, 2015.
    [9] C. Y. You, T. Ohkubo, Y. K. Takahashi and K. Hono, J. Appl. Phys 104, (2008) 033517
    [10] Aidan T. Hindmarch, Viyada Harnchana, Alex S.Walton, Andrew P.Brown, Rik M. D. Brydson and Christopher H. Marrows, Appl. Phys. Express 4, (2011) 013002
    [11] S. V. Karthik, Y. K. Takahashi, T. Ohkubo, K. Hono, S. Ikeda and H. Ohno, J. Appl. Phys 106, (2009) 023920
    [12] H. Bouchikhaoui, P. Stender, Z. Balogh, D. Baither, A. Hütten, K. Hono and
    G. Schmitz, Acta Materialia 116, (2016) 298-307
    [13] H. Bouchikhaoui, P. Stender, D. Akemeier, D. Baither, K. Hono, A. Hütten and G. Schmitz, Appl. Phys. Lett. 103, (2013) 142412
    [14] C. Y. Yang, S. J. Chang, M. H. Lee, K. H Shen, S. Y. Yang, H. J. Lin and Y. C. Tseng, Sci. Rep. 5, (2015) 17169
    [15] NSRRC, 同步加速器光源簡介. https://www.nsrrc.org.tw/chinese/lightsource.aspx
    [16] J.F. Ying, S.T. Lim, M. Tran and R. Ji, J. Phys. D: Appl. Phys. 48 (2015) 455001
    [17] 汪建民, 材料分析 Materials Analysis, 中國材料科學學會, 2014
    [18] BRUKER, Handheld XRF: How it works. http://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/handheld-xrf/how-xrf/how-xrf-works.html.
    [19] 維基百科, https://zh.wikipedia.org/wiki/X射線吸收光譜.
    [20] 金重勳,磁性技術手冊,中華民國磁性技術協會,2002。
    [21] SIMOTEC CO., L., Magnetic Hystersis Curve.
    http://www.simotecthailamd.co.th/en/knowledge9.html.
    [22] J. J. Bean and K. P. McKenna, Phys. Rev. Mater. 2, (2018) 125002
    [23] Y. Han, J. Han, H J. Choi, H J. Shin and J. Hong, Appl. Phys. Express 5, (2012) 033001
    [24] Z. Azdad, L. Marot, L. Moser, R. Steiner and E. Meyer, Sci. Rep. 8, (2018) 16251
    [25] R. Simpson, R. G. White, J. F. Watts and M. A. Baker, Appl. Surf. Sci. 405 (2017) 79-87
    [26] J. F. Ying, R. Ji, S. T. Lim, M. N. Tran, C. C. Wang and F. Ernult, J. Phys. D: Appl. Phys. 49 (2015) 065004
    [27] B. Joseph, A. Iadecola, L. Simonelli, Y. Mizuguchi, Y. Takano, T. Mizokawa and
    N. L. Saini, J. Phys.: Condens. Matter 22, (2010) 485702
    [28] Abdul K. Rumaiz, C. Jaye, J. C. Woicik, W.G Wang, D. A. Fischer, J. Jordan-Sweet, and C. L. Chien, Appl. Phys. Lett. 99, 222502 (2011)
    [29] Y.S. Han, J.H. Han, H.J. Choi, H.J. Shin, and J.G. Hong, Appl. Phys. Express 5 (2012) 033001
    [30] L.Y. Wang, J.F. Liu, Y. Zhou, Y.D. Song, J. He and David G. Evansa, Chem. Commun., (2010), 46, 3911–3913 | 3911
    [31] J. Kanak, P. Wiśniowski, T. Stobiecki, A. Zaleski, W. Powroźnik, S. Cardoso, and P. P. Freitas, J. Appl. Phys. 113, 023915 (2013)
    [32] Soshi Sato, Hiroaki Honjo, Shoji Ikeda, Hideo Ohno, Tetsuo Endoh, and Masaaki Niwa, Appl. Phys. Lett. 106, 142407 (2015)
    [33] S. J. A. Figueroa, S. J. Stewart, T. Rueda, A. Hernando and P. de la Presa, J. Phys. Chem. C (2011), 115, 5500–5508
    [34] J. D. Burton, S. S. Jaswal, E. Y. Tsymbal, O. N. Mryasov, and O. G. Heinonen, Appl. Phys. Lett. 89, 142507 (2006)
    [35] J. Y. Bae, W. C. Lim, H. J. Kim, T. D. Lee, K. W. Kim, and T. W. Kim, J. Appl. Phys. 99, 08T316 (2006)
    [36] J. C. Read, P. G. Mather, and R. A. Buhrman, Appl. Phys. Lett. 90, 132503 (2007)
    [37] V. Harnchana, A. T. Hindmarch, M. C. Sarahan, C. H. Marrows, A. P. Brown, and R. M. D. Brydson, J. Appl. Phys.113, 163502 (2013)
    [38] T. Zhu, Y. Yang, R. C. Yu, H. Ambaye, V. Lauter and J. Q. Xiao, Appl. Phys. Lett. 100, 202406 (2012)
    [39] Victor Ukleev, Sergey Suturin, Taro Nakajima, Taka-hisa Arima, Thomas Saerbeck, Takayasu Hanashima, Alla Sitnikova, Demid Kirilenko, Nikolai Yakovlev and Nikolai Sokolov, Sci. Rep. (2018) 8:8741
    [40] C. Bull, C. W. Barton, W. Griggs, A. Caruana, C. J. Kinane, P. W. Nutter, and T. Thomson, APL Mater. 7, 101117 (2019)
    [41] VARLEFY. SEAR, Neutron News, Vol. 3, NO. 3, (1992)
    [42] Z. C. Zheng, Q. X. Guo, D. Jo, D. Go , L. H. Wang, H. C. Chen, W. Yin, X. M. Wang, G. H. Yu, W. He, H.-W. Lee, J. Teng and T. Zhu, Phys. Rev. Reserch. 2, Published by the American Physical Society, 013127 (2020)
    [43] W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren: Phys. Rev. B 63
    (2001) 054416.
    [44] J. Mathon and A. Umerski: Phys. Rev. B 63 (2001) 220403
    [45] Y. S. Choi, K. Tsunekawa, Y. Nagamine, and D. Djayaprawira. J. Appl. Phys. 101, 013907 (2007)
    [46] W.F. Shen, D. Mazumdar, X.J. Zou, X.Y. Liu, B.D. Schrag, G. Xiao. Appl. Phys. Lett. 88, 182508 (2006)
    [47] Y. J. Chang, A. Canizo-Cabrera, V. G. Vazquez, Y. H. Chang, and T. h. Wu, J. Appl. Phys. 114, 184303 (2013)
    [48] Kubaschewski, Iron binary phase diagrams, p. 27, Berlin, Heidelberg, New York: Springer (1982)
    [49] A. Gloskovskii, G. Stryganyuk, S. Ouardi, G. H. Fecher, C. Felser, J. Hamrle, J. Pistora, S. Bosu, K. Saito, Y. Sakuraba, and K. Takanashi, J. Appl. Phys. 112, 074903 (2012)
    [50] P.G. Gowtham1, G.M. Stiehl, D.C. Ralph, and R.A. Buhrman, Phys. Rev. B 93, 024404 (2016)
    [51] S. Hofmann, Y. Liu, W. Jian, H.L. Kang, J.Y. Wang, Surf. Interface Anal. (2016) 48, 1354–1369
    [52] M. P. Seah, W. A. Dench, Surf. Interface Anal. Vol. 1, Issue. 1, (1979)
    [53] Siegfried Hofmann, “Auger- and X-Ray Photoelectron Spectroscopy in Materials Science”, springer series in surface sciences 49 (2013)
    [54] A. P.l Chen, J. D. Burton, E. Y. Tsymbal, Y. P. Feng, and J. S. Chen, Phys. Rev. B 98, 045129 (2018)
    [55] https://www.adnano-tek.com/magnetron-sputtering-deposition-msd.html
    [56] https://en.wikipedia.org/wiki/Sputter_deposition
    [57] http://smallintelligentsia.blogspot.com/2015/12/stt-ram_20.html

    QR CODE