研究生: |
全姬湘 Chon, Heesang |
---|---|
論文名稱: |
了解推薦系統因素對持續使用意向的影響:以台灣Netflix使用者為例的個案研究 Understanding the Impact of Recommendation System Factors on Continuous Usage Intention: A Case Study of Netflix Users in Taiwan |
指導教授: |
李傳楷
Lee, Chuan-Kai |
口試委員: |
陳寶蓮
Chen, Pao-Lien 胡美智 Hu, Mei-Chih 吳清炎 Wu, Ching-Yan |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 國際專業管理碩士班 International Master of Business Administration(IMBA) |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | Netflix 、OTT 、推薦系統 、評估 、準確度 、創新性 、自我參照 、多樣性 、持續使用意圖 、技術接受模 |
外文關鍵詞: | Netflix, OTT, Recommendation system, Evaluation, Accuracy, Novelty, Self-reference, Diversity, Continuous Usage Intention, Technology Acceptance Model |
相關次數: | 點閱:83 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
OTT市場的迅速增長加劇了供應商之間的競爭。Netflix作為這個市場的關鍵參與者,面臨著保留客戶的挑戰。本研究將從使用者的角度探討Netflix推薦系統的關鍵因素,這些因素對持續使用意圖產生影響。此外,本研究評估滿意度在這種關係中的中介效果。線上調查在2023年4月30日至5月8日期間對台灣Netflix使用者進行。總共獲得218份有效回應,收集了關於推薦系統的四個評估因素(準確性、新穎性、自我參照性和多樣性)、滿意度和持續使用意圖的數據。統計分析包括線性回歸,評估這些因素以及滿意度的影響。結果顯示,準確性對持續使用意圖有顯著影響,而新穎性、自我參照性和多樣性則沒有直接影響。滿意度在準確性和持續使用意圖之間部分中介,凸顯了它在用戶保留中的重要性。此外,多樣性對持續使用意圖的影響完全由滿意度中介,強調了多樣化推薦系統的重要性。這些研究結果為Netflix和其他OTT供應商提供了有價值的洞察,以增強符合消費者期望並提高保留率的推薦系統。
The rapid growth of the Over-The-Top (OTT) market intensifies competition among providers. Netflix, a key player in this market, faces the challenge of retaining customers. This study examines the key factors of Netflix's recommendation system that influence Continuous Usage Intention from the user's perspective. Furthermore, it assesses the mediating effect of satisfaction on this relationship. An online survey was conducted among Taiwanese Netflix users from April 30th to May 8th, 2023. Out of the survey, 218 valid responses were obtained, collecting data on four evaluation factors of the recommendation system (Accuracy, Novelty, Self-reference, and Diversity), Satisfaction, Continuous Usage Intention. Statistical analysis, including linear regression, assessed the impact of these factors and the mediating role of Satisfaction. Results indicate that Accuracy significantly influences Continuous Usage Intention, while Novelty, Self-reference, and Diversity have no direct effect. Satisfaction serves as a partial mediator in the relationship between Accuracy and Continuous Usage Intention. Satisfaction fully mediates the relationship between Diversity and Continuous Usage Intention. These findings offer valuable insights for Netflix and other OTT providers to enhance recommendation systems tailored to meet consumer expectations and increase retention.
Aggarwal, C.C. (2016). An Introduction to Recommender Systems. Recommender Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-29659-3_1
Augusto, L., Santos, S., & Santo, P. E. (2020). Willingness to pay a premium price for streaming services: The role of trust in services. Marketing and Smart Technologies (pp. 19–28). Springer Singapore.
An, S., Seo, J., & Choi, J. (2022). A Study on the Factors Affecting the Continuous Intention to Use Digital Content Over-the-Top Service. Journal of Korean Society for Quality Management, 50(1), 105-124. https://doi.org/10.7469/JKSQM.2022.50.1.105
Avazpour, I., Pitakrat, T., Grunske, L., & Grundy, J. (2014). Dimensions and metrics for evaluating recommendation systems. In Recommendation Systems in Software Engineering (pp. 245–273). Springer Berlin Heidelberg.
Bae Hyun-Jin, & Lee Sang Woo. (2020). A study on user recognition of personalized recommended service platforms by content characteristics. Korean Journal of Broadcasting and Telecommunication Studies, 34(3), 5–42.
Baek, S., Lee, W., Chae, A., Hwang, E., & Kim, S. (2017). Exploring the factors of serendipity in online video environment. Journal of the HCI Society of Korea, 12(3), 25–33. https://doi.org/10.17210/jhsk.2017.08.12.3.25
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly: Management Information Systems, 25(3), 351. https://doi.org/10.2307/3250921
B.Thorat, P., M. Goudar, R., & Barve, S. (2015). Survey on collaborative filtering, content-based filtering and hybrid recommendation system. International Journal of Computer Applications, 110(4), 31–36. https://doi.org/10.5120/19308-0760
Camilleri, M. A., & Falzon, L. (2021). Understanding motivations to use online streaming services: integrating the technology acceptance model (TAM) and the uses and gratifications theory (UGT). Spanish Journal of Marketing-ESIC, 25(2), 217–238. https://doi.org/10.1108/sjme-04-2020-0074
Cebeci, U., Ince, O., & Turkcan, H. (2019). Understanding the intention to use Netflix: An extended technology acceptance model approach. International Review of Management and Marketing, 9(6), 152–157. https://doi.org/10.32479/irmm.8771
Chandak, M., Girase, S., & Mukhopadhyay, D. (2015). Introducing hybrid technique for optimization of book recommender system. Procedia Computer Science, 45, 23–31. https://doi.org/10.1016/j.procs.2015.03.075
Chang, H. H., & Chen, S. W. (2008). The impact of customer interface quality, satisfaction and switching costs on e-loyalty: Internet experience as a moderator. Computers in Human Behavior, 24(6), 2927-2944.
Choi, J.-W., & Lee, H.-J. (2012). An integrated perspective of user evaluating personalized recommender systems : Performance-driven or user-centric. The Journal of Society for E-Business Studies, 17(3), 85–103. https://doi.org/10.7838/jsebs.2012.17.3.085
Choi, J., Lee, H. J., & Kim, H.-W. (2017). Examining the effects of personalized app recommender systems on purchase intention: A self and social-interaction perspective. Journal of Electronic Commerce Research, 18(1), 73–102.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319. https://doi.org/10.2307/249008
Finbox. (2023). Netflix Total Revenue Growth. Retrieved from https://finbox.com/NASDAQGS:NFLX/explorer/total_rev_growth/
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Addison-Wesley, Cambridge, MA.
Gaw, F. (2022). Algorithmic logics and the construction of cultural taste of the Netflix Recommender System. Media, Culture, and Society, 44(4), 706–725. https://doi.org/10.1177/01634437211053767
Gultom, M. D., Adlina, H., & Siregar, O. M. (2022). The influence of electronic word of mouth and brand image on the purchase decision of video on demand Netflix subscription: A study on Netflix users in Medan City. Journal of Humanities, Social Sciences, and Business, 2(1), 122-127. https://doi.org/10.55047/jhssb.v2i1.389
Gupta, G., & Singharia, K. (2021). Consumption of OTT media streaming in COVID-19 lockdown: Insights from PLS analysis. Vision The Journal of Business Perspective, 097226292198911. https://doi.org/10.1177/0972262921989118
Habib, S., Hamadneh, N. N., & Hassan, A. (2022). The relationship between digital marketing, customer engagement, and purchase intention via OTT platforms. Journal of Mathematics, 2022, 1–12. https://doi.org/10.1155/2022/5327626
Hasan, V. (2017). Analisis Faktor-Faktor Yang Mempengaruhi Willingness To Subscribe: Telaah Pada Layanan Video On Demand Netflix. Ultima Management : Jurnal Ilmu Manajemen, 9(1), 22-38. https://doi.org/https://doi.org/10.31937/manajemen.v9i1.595
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53. https://doi.org/10.1145/963770.963772
Jannach, D., & Jugovac, M. (2019). Measuring the business value of recommender systems. ACM Transactions on Management Information Systems, 10(4), 1–23. https://doi.org/10.1145/3370082
Kang, S., & Kim, &. T. J. (2007). The Study on the Effect of External Information on Purchase Decision-Making Process in Online Shopping Mall Based Electronic Commerce. Journal of Information Technology Applications & Management, 14(4), 97–120.
Kim, K. J., Jeong, I. J., Park, J. C., Park, Y. J., Kim, C. G., & Kim, T. H. (2007). The impact of network service performance on customer satisfaction and loyalty: High-speed internet service case in Korea. Expert Systems with Applications, 32(3), 822-831.
Kotkov, D., Wang, S., & Veijalainen, J. (2016). A survey of serendipity in recommender systems. Knowledge-Based Systems, 111, 180–192. https://doi.org/10.1016/j.knosys.2016.08.014
Lee, M.-K., Kim, W.-J., & Song, M.-H. (2019). A study on the factors influencing continuous intention to use of OTT service users: Focused on the extension of technology acceptance model. Journal of Digital Convergence, 17(11), 537–546. https://doi.org/10.14400/JDC.2019.17.11.537
Liao, C., Chen, J.-L., & Yen, D. C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 2804–2822. https://doi.org/10.1016/j.chb.2006.05.006
Liao, Y. W., Wang, Y. S., & Yeh, C. H. (2014). Exploring the relationship between intentional and behavioral loyalty in the context of e-tailing. Internet Research, 24(5), 668–686.
Luo, C., Luo, X. (robert), Schatzberg, L., & Sia, C. L. (2013). Impact of informational factors on online recommendation credibility: The moderating role of source credibility. Decision Support Systems, 56, 92–102. https://doi.org/10.1016/j.dss.2013.05.005
Malhotra, Y., & Galletta, D. F. (1999). Extending the technology acceptance model
to account for social influence: Theoretical bases and empirical validation. In Systems sciences, 1999. HICSS-32. Proceedings of the 32nd annual Hawaii international conference on (pp. 14-pp). IEEE.
Matt, C., Benlian, A., Hess, T., & Weiß, C. (2014). Escaping from the Filter Bubble? The Effects of Novelty and Serendipity on Users’ Evaluations of Online Recommendations. Proceedings of the 35th International Conference on Information Systems (ICIS 2014), Auckland, New Zealand.
Netflix Help Center. (2023). How Netflix's Recommendations System Works. Retrieved from https://help.netflix.com/en/node/100639
Netflix Newsroom. (2016, February 18). A Global Approach to Recommendations. Retrieved from https://about.netflix.com/en/news/a-global-approach-to-recommendations
Netflix Newsroom. (2019, September 6). Coming to Netflix: Reminders for Your Favorite Titles. Retrieved from https://about.netflix.com/en/news/coming-soon-feature
https://about.netflix.com/en/news/two-thumbs-up-even-better-recommendations
Netflix Newsroom. (2022a, June 23). Something for Everyone. Retrieved from https://about.netflix.com/en/news/something-for-everyone
Netflix Newsroom. (2022b, April 12). Double the Thumbs For Even Better Recommendations. Retrieved from https://about.netflix.com/en/news/two-thumbs-up-even-better-recommendations
Nilashi, M., Jannach, D., Ibrahim, O. B., Esfahani, M. D., & Ahmadi, H. (2016). Recommendation quality, transparency, and website quality for trust-building in recommendation agents. Electronic Commerce Research and Applications, 19, 70–84. https://doi.org/10.1016/j.elerap.2016.09.003
Pajkovic, N. (2022). Algorithms and taste-making: Exposing the Netflix Recommender System’s operational logics. Convergence The International Journal of Research into New Media Technologies, 28(1), 214–235. https://doi.org/10.1177/13548565211014464
Park, B.-J., & Choi, S. (2018). User evaluation, usage intention and purchase intention according to recommendation services in online fashion shopping mall. Journal of Korea Design Forum, 23(4), 139–149. https://doi.org/10.21326/ksdt.2018.23.4.012
Pu, P., Chen, L., & Hu, R. (2011). A user-centric evaluation framework for recommender systems. Proceedings of the Fifth ACM Conference on Recommender Systems.
Roca, J. C., Chiu, C.-M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683–696. https://doi.org/10.1016/j.ijhcs.2006.01.003
Rogers, E. M. (1962). Diffusion of innovations. New York: Free Press.
Rogers, T. B., Kuiper, N. A., & Kirker, W. S. (1977). Self-reference and the encoding of personal information. Journal of Personality and Social Psychology, 35(9), 677–688. https://doi.org/10.1037//0022-3514.35.9.677
Schwartz, B. (2004). The paradox of choice: Why more is less. HarperCollins Publishers.
Silveira, T., Zhang, M., Lin, X., Liu, Y., & Ma, S. (2019). How good your recommender system is? A survey on evaluations in recommendation. International Journal of Machine Learning and Cybernetics, 10(5), 813–831. https://doi.org/10.1007/s13042-017-0762-9
Steck, H., Baltrunas, L., Elahi, E., Liang, D., Raimond, Y., & Basilico, J. (2021). Deep Learning for Recommender Systems: A Netflix Case Study. AI Magazine, 42(3), 7-18. https://doi.org/10.1609/aimag.v42i3.18140
Tahmasebi, H., Ravanmehr, R., & Mohamadrezaei, R. (2021). Social movie recommender system based on deep autoencoder network using Twitter data. Neural Computing and Applications, 33(5), 1607-1623.
Tam, & Ho. (2006). Understanding the impact of web personalization on user information processing and decision outcomes. MIS Quarterly: Management Information Systems, 30(4), 865. https://doi.org/10.2307/25148757
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research
agenda on interventions. Decision Sciences, 39(2), 273-315.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204
Whip Media. (2022, June). Streaming Satisfaction Report: Evolving Perceptions of Value: The Shifting Sands of SVOD (US edition). Retrieved from https://www.whipmedia.com/wp-content/uploads/2022/06/US-Streaming-Satisfaction-Report-2022.pdf