簡易檢索 / 詳目顯示

研究生: 張揚理
Chang, Yang-Lee.
論文名稱: 論人工智慧醫療軟體之法規管制— 以美國及歐盟法為中心
Regulating Artificial Intelligence-Based Medical Software: A Comparative Study on Law of the United States and the European Union
指導教授: 林勤富
Lin, Ching-Fu
口試委員: 范建得
Fan, Chien-Te
江浣翠
Chiang, Wan-Tsui
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 科技法律研究所
Institute of Law for Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 117
中文關鍵詞: 人工智慧醫療軟體醫療器材管制理論管制架構美國食品藥物管理署歐盟醫療器材規則歐盟人工智慧管制規則草案
外文關鍵詞: artificial intelligence, medical software, medical device, regulatory theory, regulatory structure, USFDA, MDR, AI Act
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來「智慧醫療」皆被各國政策列為重要的發展項目,人工智慧技術不但有望解決醫療體系人力短缺及資源分配不均的情形,甚至能幫助人們帶來更精準的治療方案、更低成本的醫療花費及更高品質的醫療照護。然而,人工智慧技術並非完美無缺,尤其不透明運作的本質,現存法規亦難以有效掌握並減低其風險。目前,在醫療領域最常被應用的人工智慧技術,係以「醫療軟體」形式分析輸入之健康資訊,提供醫護人員診斷及治療上之輸出建議。以美國及歐盟法規為例,皆為將醫療軟體納入「醫療器材」範圍管制,惟目前醫療器材法規並無為人工智慧特性所設計之管制措施,學者亦紛紛提出應為人工智慧醫療軟體管制,進行法規上的革新。人工智慧醫療軟體作為醫療產品之一種,本文主要關注其安全性及有效性之管制,檢視近年相關法規管制上有何變革,更進而思考管制上更適切的作法。
    本文首先觀察人工智慧應用於醫療場域之情形,包含其應用於醫療之目的、種類,以提出其作為一項醫療產品,於法規管制上之正當性、連結性及有效性相應之挑戰。其次,檢視美國及歐盟近年來於醫療器材法規上之增修,以及針對人工智慧醫療軟體所發布之政策文件及法律草案,並以管制主體、管制客體及管制方法三個面向,評析其於管制上的特點及優劣。最後,本文對於美國及歐盟在人工智慧醫療軟體之管制上進行比較分析,並結合法律及科學領域之學者文獻,提出法規對於人工智慧醫療軟體管制上得以加強之處,本文亦提出兩點管制建議:電子健康資料之整合及運用、以及多方參與而行政機關主導之管制,以供管制者參照。


    In recent years, many countries have prioritized the development of artificial intelligence (AI) technology in healthcare. AI can bring positive changes, though, it is not a perfect solution, especially when it comes to its much-debated black box nature and other unknown risks that are beyond the capabilities of the current legal system. At this stage, AI in healthcare mostly appears in the form of “medical software” that generates advice for medical professionals. In the US and the EU, medical software is regulated as a “medical device,” yet the current legislation lacks mechanisms designed for the regulation of AI. Many scholars have urged to establish a new model for regulating AI-based medical software. By scrutinizing relevant law reforms in recent years, this Thesis aims to explore more appropriate solutions that can ensure the safety and effectiveness of AI-based medical software.
    First, through examining how AI is used in the medical field, including the purposes and the types of AI-based medical software, this Thesis identifies the regulatory challenges of such software in the aspects of legitimacy, effectiveness, and connection. Furthermore, this Thesis analyzes the pros and cons of current approaches in terms of the regulatory body, object, and method after studying the reforms of medical devices law in the US and the EU, and regulation proposals targeting AI-based software. This Thesis also conducts a comparative study on US and EU regulations of AI-based medical software, and argues that some issues have not been fully addressed. Finally, this thesis proposes two solutions, namely integrating electronic health data and introducing a government-led model that is participated by multiple parties.

    摘要 i Abstract ii 謝辭 iii 目錄 v 第一章、緒論 1 第一節、問題意識 1 第二節、文獻回顧 4 第三節、研究方法 9 第四節、研究範圍與限制 10 第一項、管制主體範圍 10 第二項、管制客體範圍 11 第三項、管制方法範圍 14 第五節、研究架構 14 第二章、智慧醫療之目的、種類及管制挑戰 16 第一節、人工智慧技術之特性 16 第一項、不透明性 17 第二項、應用過程變動性 19 第二節、人工智慧於醫療領域之應用目的 20 第一項、個人化精準醫療 20 第二項、有效分配醫療資源 21 第三項、加速醫學研究進程 22 第三節、人工智慧醫療產品應用種類 22 第一項、醫療影像判讀 23 第二項、臨床決策輔助 23 第三項、行動應用程式 24 第四項、體外診斷測試 25 第五項、醫療行政管理 26 第四節、人工智慧醫療產品之管制挑戰 28 第一項、管制必要性 28 第二項、管制困難 29 第三章、美國人工智慧醫療軟體管制規範 32 第一節、軟體作為醫療器材之法規演變 32 第一項、美國醫療器材法規簡介 32 第二項、21世紀醫療法的變革 34 第二節、人工智慧軟體醫療器材管制架構 37 第一項、軟體醫療器材之管制 37 第二項、人工智慧醫療軟體管制 40 第三節、智慧醫療軟體管制種類 43 第一項、臨床決策輔助軟體 44 第二項、移動醫療應用程式 45 第三項、實驗室自行研發檢驗技術 47 第四節、醫療資料管制 48 第五節、美國人工智慧醫療軟體管制架構評析 50 第一項、管制主體評析 50 第二項、管制客體評析 52 第二項、管制方法評析 54 第四章、歐盟人工智慧醫療軟體管制規範 57 第一節、歐盟醫療軟體管制架構 58 第一項、醫療軟體屬於醫療器材之管制變革 58 第二項、醫療器材法中醫療軟體規範 62 第二節、歐盟人工智慧管制規則草案 66 第一項、立法背景及目的 66 第二項、高風險人工智慧系統 67 第三節、醫療資料管制 69 第四節、歐盟人工智慧醫療軟體管制評析 71 第一項、管制主體評析 71 第二項、管制客體評析 75 第三項、管制方法評析 77 第五章、歐美人工智慧醫療軟體規範比較分析與管制建議 80 第一節、美國及歐盟管制比較分析 80 第一項、管制主體比較分析 83 第二項、管制客體比較分析 85 第三項、管制方法比較分析 88 第二節、歐美人工智慧醫療軟體管制不足之處 90 第一項、更新問題 90 第二項、臨床驗證 92 第三項、可解釋性 94 第四項、誘因保護 97 第三節、人工智慧醫療軟體管制建議 99 第一項、電子健康資料之整合及運用 100 第二項、多方參與而行政機關主導之管制 102 第六章、結論—兼論台灣人工智慧醫療軟體未來管制方向 106 參考文獻 108

    一、中文文獻
    1. 專書
    黃偉峰主編(2007),《歐洲聯盟之組織及運作》,第二版。
    2. 文章
    王泰銓,(2019),〈關於歐盟法規範的名稱翻譯、條款引用與適用上的問題〉,歐洲萬象,請參閱: https://www.eusa-taiwan.org.tw/europe_detail/65.htm。
    何之行、廖貞(2020),〈AI個資爭議在英國與歐盟之經驗──以Google DeepMind一案為例〉,《月旦法學雜誌》,302期,頁257。
    郭鎮源、高鴻文、林慶波(2020),〈淺談人工智慧於醫學影像的應用〉,《臨床醫學月刊》, 85卷1期,頁15。
    陳月端(2012),〈告知同意倫理及法律之反思〉,《科技法學論叢》,第八期。
    藍玉春(2005),〈歐盟多層次治理:論點與現象〉,《政治科學論叢》,第24期。
    3. 網路資源
    王泰銓,關於歐盟法規範的名稱翻譯、條款引用與適用上的問題,台灣歐洲聯盟研究協會,2019年2月1日,https://www.eusa-taiwan.org.tw/europe_detail/65.htm(最後瀏覽日:2021年8月20日)。
    二、英文文獻
    1. Books
    ARTIFICIAL INTELLIGENCE IN HEALTH CARE: THE HOPE, THE HYPE, THE PROMISE, THE PERIL (Michael Matheny et al. eds., 2019).
    PETER STONE et al., ARTIFICIAL INTELLIGENCE AND LIFE IN 2030: ONE HUNDRED YEAR STUDY ON ARTIFICIAL INTELLIGENCE (2016).
    INSTITUTE OF MEDICINE OF THE NATIONAL ACADEMY, MEDICAL DEVICES AND THE PUBLIC'S HEALTH: THE FDA 510(K) CLEARANCE PROCESS AT 35 YEARS (2011).
    ROBERT BALDWIN & MARTIN CAVE, UNDERSTANDING REGULATION: THEORY, STRATEGY, AND PRACTICE (1999).
    ROGER BROWNSWORD, RIGHT, REGULATION, AND THE TECHNOLOGIAL REVOLUTION (2008).
    ROGER BROWNSWORD & MORAG GOODWIN, LAW AND THE TECHNOLOGIES OF THE TWENTY-FIRST CENTURY (2012).
    STUART J. RUSSELL & PETER NORVIG, ARTIFICIAL INTELLIGENCE: A MODERN APPROACH (3d ed. 2010).
    VAL THEISZ, MEDICAL DEVICE REGULATORY PRACTICE: AN INTERNATIONAL PERSPECTIVE (2015).
    2. Articles
    Adarsh Subbaswamy & Suchi Saria, From Development to Deployment: Dataset Shift, Causality, and Shift-Stable Models in Health AI, 21(2) BIOSTATISTICS 345 (2020).
    Alan M. Turing, Computing Machinery and Intelligence, LIX MIND (1950).
    Andrew H. Beck et al., Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival, 3 SCI. TRANSNATIONAL MED. 1 (2011).
    Ariel Dora Stern & W Nicholson Price II, Regulatory Oversight, Causal Inference, and Safe and Effective Health Care Machine Learning, 21(2) BIOSTATISTICS 363 (2019).
    Effy Vayena et al., Machine Learning in Medicine: Addressing Ethical Challenges, 15(11) PLoS Med. (November 6, 2018), available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219763/ (Last visited August 14, 2021).
    Effy Vayena, Value from Health Data: European Opportunity to Catalyse Progress in Digital Health, THE LANCET (February 8, 2021), available at: https://www.thelancet.com/article/S0140-6736(21)00203-8/fulltext#articleInformation (Last visited August 14, 2021).
    Eric Wu et al., How Medical AI Devices are Evaluated: Limitations and Recommendations from an Analysis of FDA Approvals, 27 NAT. MED. 582 (2021).
    Bradley C. Karkkainen, “New Governance” in Legal Thought and in the World: Some Splitting as Antidote to Overzealous Lumping, 89 MINN. L. REV. 471 (2004)
    Boris Babic et al., Algorithms on Regulatory Lockdown in Medicine: Prioritize Risk Monitoring to Address the “Update Problem”, 366 (6470) SCI. 1202 (2019).
    Boris Babic et al., Beware Explanations from AI in Health Care, 373 SCI. 284 (2021).
    E. Richard Gold & Julia Carbone, Myriad Genetics: In the Eye of the Policy Storm, 12 GENETICS IN MED. 39 (2010).
    Fei Jiang et al., Artificial Intelligence in Healthcare: Past, Present and Future, 2 STROKE VASC NEUROL. 231 (2017).
    Han-Wei Liu et al., Beyond State v. Loomis: Artificial Intelligence, Government Algorithmization, and Accountability, 27(2) INT'L JL & INFO TECH 122 (2019).
    I. Glenn Cohen et al., The European Artificial Intelligence Strategy: Implications and Challenges for Digital Health, THE LANCET e376 (July 1, 2020), available at: https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30112-6/fulltext (Last visited August 14, 2021).
    I. Glenn Cohen & Michelle M. Mello, HIPAA and Protecting Health Information in the 21st Century, JAMA 320(3) 231 (2018).
    Janos Meszaros et al., The Interaction of the Medical Device Regulation and the GDPR: Do European rules on privacy and scientific research impair the safety & performance of AI medical devices?, in THE FUTURE OF MEDICAL DEVICE REGULATION: INNOVATION AND PROTECTION (I. Glenn Cohen et al. ed.) (forthcoming 2021).
    Jessica Morley et al., The Debate on the Ethics of AI in Health Care: a Reconstruction and Critical Review, 1 (2019), available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3486518 (Last visited August 14, 2021).
    Julia Amann et al., Explainability for Artificial Intelligence in Healthcare: a multidisciplinary perspective, 20 BMC MED. INFORM. DECIS. MAK. 1 (2020).
    Karen Yeung, The Forms and Limits of Choice Architecture as a Tool of Government, 38(3) J. L. & POL'Y., 186 (2016).
    Mathew U. Scherer, Regulating Artificial Intelligence Systems: Risk, Challenges, Competence, and Strategies, 29(2) HARV. J.L. & TECH. 354 (2016).
    Michael Veale & Frederik Zuiderveen Borgesius, Demystifying the Draft EU Artificial Intelligence Act, SOCARXIV (July 6, 2021), at 14, available at: https://arxiv.org/abs/2107.03721 (Last visited August 14, 2021).
    Nicolas Terry, Appification, AI, and Healthcare's New Iron Triangle, 21(2) J. HEALTH CARE L. & POL'Y. 118 (2018).
    Nicolas Terry, Assessing the Thin Regulation of Consumer-Facing Health Technologies, 48(1) J.L. MED. & ETHICS. 94 (2020).
    Nicolas Terry, Of Regulating Healthcare AI and Robots, 21(3) YALE J.L. & TECH. 133 (2019).
    Paul Verbruggen & Barend van Leeuwen, The Liability of Notified Bodies Under the EU's New Approach: The Implications of the PIP Breast Implants Case (C-219/15) (Tilburg Private Law Working Paper Series No. 8/2017), available at SSRN: https://privpapers.ssrn.com/sol3/papers.cfm?abstract_id=3038830.
    Robert Baldwin & Julia Black, Driving Priorities in Risk-based Regulation: What's the Problem?, 43(4) J.L. & SOC'Y 565 (2016).
    Roger Allan Ford & W. Nicholson Price II, Privacy and Accountability in Black-Box Medicine, 23(1) MICH. TELECOMM. & TECH. L. REV. 1 (2016).
    Timo Minssen & Jens Schovsbo, Legal aspects of biobanking as key issues for personalized medicine & translational exploitation, 11(5) PERSONALIZED MED. 497 (2014).
    Timo Minssen et al., Regulatory Responses to Medical Machine Learning, 7(1) J. LAW BIOSCI. 1 (2020).
    Timo Minssen et al., When Does Stand-Alone Software Qualify as a Medical Device in the European Union?, 28(3) MED.L.REV. 615 (2020).
    W. Nicholson Price II, Big Data, Patents, and the Future of Medicine, 37 CARDOZO L. REV., 1401 (2016).
    W. Nicholson Price II, Black-box Medicine, 28 HARV. J.L. & TECH. 419 (2015).
    W. Nicholson Price II, Regulating Black-box Medicine, 116(3) MICH. L. REV. 421 (2017).
    W. Nicholson Price II et al., Potential Liability for Physicians Using Artificial Intelligence, 322(18) JAMA 1765 (2019).
    Jenna Burrell, How the machine ‘thinks’: Understanding opacity in machine learning algorithms, BIG DATA & SOC'Y. 1 (2016).
    Jeffrey De Fauw et al.,Clinically Applicable Deep Learning for Diagnosis and Referral in Retinal Disease, 24 NAT. MED. 1342 (2018).
    Ziad Obermeyer et al., Dissecting racial bias in an algorithm used to manage the health of populations, 366 SCI. 447 (2019).
    3. USFDA Documents
    Digital Health Software Precertification (Pre-Cert) Program, U.S. FOOD & DRUG ADMINISTRATION (May 6 2021), https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-program (Last visited August 14, 2021).
    FDA-NIH BIOMARKER WORKING GROUP, BEST (BIOMARKERS, ENDPOINTS, AND OTHER TOOLS) RESOURCE (2016 January), https://www.ncbi.nlm.nih.gov/books/NBK326791/ (Last visited August 14, 2021).
    U.S. FOOD & DRUG ADMINISTRATION, CLINICAL DECISION SUPPORT SOFTWARE DRAFT GUIDANCE FOR INDUSTRY AND FOOD AND DRUG ADMINISTRATION STAFF (2019) https://www.fda.gov/media/109618/download.
    U.S. FOOD & DRUG ADMINISTRATION, DIGITAL HEALTH INNOVATION ACTION PLAN (2017), https://www.fda.gov/media/106331/download.
    U.S. FOOD & DRUG ADMINISTRATION, DISCUSSION PAPER ON LABORATORY DEVELOPED TESTS (LDTS) (2017) https://www.fda.gov/media/102367/download.
    U.S. FOOD & DRUG ADMINISTRATION, FRAMEWORK FOR REGULATORY OVERSIGHT OF LABORATORY DEVELOPED TESTS (LDTS) (2014) https://www.fda.gov/media/89841/download.
    U.S. FOOD & DRUG ADMINISTRATION, GENERAL WELLNESS: POLICY FOR LOW RISK DEVICE (2019), https://www.fda.gov/media/90652/download.
    U.S. FOOD & DRUG ADMINISTRATION, POLICY FOR DEVICE SOFTWARE FUNCTIONS AND MOBILE MEDICAL APPLICATIONS (2019) https://www.fda.gov/media/80958/download.
    U.S. FOOD & DRUG ADMINISTRATION, PROPOSED REGULATORY FRAMEWORK FOR MODIFICATIONS TO ARTIFICIAL INTELLIGENCE/MACHINE LEARNING-BASED SOFTWARE AS A MEDICAL DEVICE (SAMD) – DISCUSSION PAPER (2019), https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf.
    U.S. FOOD & DRUG ADMINISTRATION, SOFTWARE PRECERTIFICATION PROGRAM: WORKING MODEL – VERSION 1.0 (January 2019), https://www.fda.gov/media/119722/download.
    21st Century Cures Act, Pub. L. No. 114-255 (2016).
    4. EU Documents
    Commission Guidelines MEDDEV 2.1/6 on the Qualification and Classification of Stand Alone Software Used in Healthcare within the Regulatory Framework of Medical Devices (July 15, 2016), https://ec.europa.eu/docsroom/documents/17921/attachments/1/translations (Last visited August 13, 2021).
    Commission Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence and Amending Certain Union Legislative Acts, COM (2021) 206 final (Apr. 21, 2021)
    Commission Regulation 1025/2012 of the European Parliament and of the Council of 25 October 2012 on European standardization, 2012 O.J. (L316).
    Commission Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC, 2016 O.J. (L 119) [hereinafter GDPR].
    Commission White Paper on Artificial Intelligence: Public consultation towards a European approach for excellence and trust, COM (2020) 65 final (February 19, 2020).
    Council Directive 93/42/EEC concerning medical devices, 1993 O.J. (L169)
    European Commission Press Release IP/20/589, Commission postpones application of the Medical Devices Regulation to prioritise the fight against coronavirus (April 3, 2020).
    European Commission Press Release IP/21/1682, Europe fit for the Digital Age: Commission proposes new rules and actions for excellence and trust in Artificial Intelligence (April 21, 2021).
    European Commission Press Release IP/12/96, Medical devices: European Commission calls for immediate actions - tighten controls, increase surveillance, restore confidence (February 9, 2012).
    EUROPEAN MEDICINES AGENCY, A COMMON DATA MODEL FOR EUROPE? – WHY? WHICH? HOW? (October 4, 2018), https://www.ema.europa.eu/en/documents/report/common-data-model-europe-why-which-how-workshop-report_en.pdf.
    HMA & EMA, HMA-EMA JOINT BIG DATA TASKFORCE SUMMARY REPORT (February 2019), https://www.ema.europa.eu/en/documents/minutes/hma/ema-joint-task-force-big-data-summary-report_en.pdf (Last visited 13 March ,2021).
    Medical Device Coordination Group Document, Guidance on Qualification and Classification of Software in Regulation (EU) 2017/745 and Regulation (EU) 2017/746, Annex III (October 2019), https://ec.europa.eu/docsroom/documents/37581 (Last visited August 13, 2021).
    New legislative framework, EUROPEAN COMMISSION, https://ec.europa.eu/growth/single-market/goods/new-legislative-framework_en (Last visited August 13, 2021).
    Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC, 2016 O.J. (L 119) [hereinafter GDPR].
    Regulation 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation No 178/2002 and Regulation No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC, 2017 O.J. (L117).
    Regulation 2017/746 of the European Parliament and of the Council of 5 April 2017 on in vitro diagnostic medical devices and repealing Directive 98/79/EC and Commission Decision 2010/227/EU, 2017 O.J. (L117).
    5. Cases
    Case C-120/78, Rewe-Zentral AG v Bundesmonopolverwaltung für Branntwein ('Cassis de Dijon’) 1979, E.C.R. 42.
    Case C-219/15, Elisabeth Schmitt v. TÜV Rheinland LGA Products GmbH, 2017 E.C.R. 128.
    Case C-329/16, Syndicat national de I’industrie de technologies médicales (SNITEM) & Philips France v. Premier Minister and Ministre de Affairs sociales et de la Santé, 2017 E.C.R. 947.
    Diamond v. Diehr, 450 U.S. 175 (1981).
    Mayo Collaborative Servs. v. Prometheus Labs., Inc., 132 S. Ct. 1289 (2012).
    Alice Corp. Pty. v. CLS Bank Int’l, 134 S. Ct. 2347 (2014).
    6. Websites
    ABBYY Accelerates U.S. Food and Drug Administration’s Public Health Initiatives, ABBYY (October 20, 2020), https://www.abbyy.com/company/news/abbyy-accelerates-usa-food-and-drug-administrations-public-health-initiatives/ (Last visited August 14, 2021).
    ABBYY’s Digital Intelligence Platform transforms the U.S. Food and Drug Administration, ABBYY, https://www.abbyy.com/customer-stories/abbyys-digital-intelligence-platform-transforms-the-us-fda/ (Last visited March 16, 2021).
    About the Food and Drug Administration (FDA) Sentinel Initiative, SENTINEL, https://www.sentinelinitiative.org/about (Last visited August 14, 2021).
    Adopting EU law, EUROPEAN COMMISSION, https://ec.europa.eu/info/law/law-making-process/adopting-eu-law_en (Last visited August 13, 2021).
    Bernie Monegain. IBM Watson pinpoints rare form of leukemia after doctors misdiagnosed patient, HEALTHCARE IT NEWS (August 8, 2016), https://www.healthcareitnews.com/news/ibm-watson-pinpoints-rare-form-leukemia-after-doctors-misdiagnosed-patient (Last visit March 13, 2021).
    Ching-Fu Lin, Challenges to Third-Party Food Safety Audits and Certification, BILL OF HEALTH (December 5, 2013), https://blog.petrieflom.law.harvard.edu/2013/12/05/challenges-to-third-party-food-safety-audits-and-certification-2/ (Last visited August 14, 2021).
    FDA's Sentinel Initiative, U.S. FOOD & DRUG ADMIN. (October 18, 2019), https://www.fda.gov/safety/fdas-sentinel-initiative (Last visited August 14, 2021).
    High-Level Expert Group on Artificial Intelligence, Ethics guidelines for trustworthy AI (April 8, 2019), https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (Last visited August 13, 2021).
    High-level expert group on artificial intelligence, EUROPEAN COMMISSION, https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai (Last visited August 13, 2021).
    How decisions are made, EUROPEAN COMMISSION, https://ec.europa.eu/info/strategy/decision-making-process/how-decisions-are-made_en. (Last visited August 13, 2021).
    Kyle Wiggers, Atomwise raises $123 million to accelerate drug discovery with AI, THE MACHINE (August 11, 2020), https://venturebeat.com/2020/08/11/atomwise-raises-123-million-to-accelerate-drug-discovery-with-ai/ (Last visited August 16, 2021).
    The Project on Precision Medicine, Artificial Intelligence, and the Law, PETRIE-FLOM CENTER, https://petrieflom.law.harvard.edu/research/precision-medicine-artificial-intelligence-and-law (Last visited March 13, 2021).
    Notified Bodies Nando (IVDR), EUROPEAN COMMISSION, https://ec.europa.eu/growth/tools-databases/nando/index.cfm?fuseaction=directive.notifiedbody&dir_id=35 (Last visited August 13, 2021).
    Notified Bodies Nando (MDR), EUROPEAN COMMISSION, https://ec.europa.eu/growth/tools-databases/nando/index.cfm?fuseaction=directive.notifiedbody&dir_id=34 (Last visited August 13, 2021).
    Press Release, Office of the Press Secretary of White House, The Precision Medicine Initiative (January 30, 2015), https://obamawhitehouse.archives.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative (Last visited March 13, 2021).
    Serra J. Schlanger et al., Telemedicine: Understanding FDA’s Role in Recent Regulatory and Enforcement Actions, COMPLIANCE TODAY MAGAZINE (July 12, 2019), available at: https://www.thefdalawblog.com/2019/07/telemedicine-understanding-fdas-role-in-recent-regulatory-and-enforcement-actions/ (Last visited August 14, 2021).
    Scaling Streams with Google, DEEPMIND (November 13, 2018) https://deepmind.com/blog/announcements/scaling-streams-google (Last visited 13 March, 2021).
    The New Medical Device Regulation (MDR), TÜV SÜD, https://www.tuvsud.com/zh-tw/resource-centre/infographics/the-new-medical-device-regulation (Last visited August 13, 2021).
    Jed Su, Apple Watch 4 Is Now An FDA Class 2 Medical Device: Detects Falls, Irregular Heart Rhythm, FORBES (September 14, 2018), https://www.forbes.com/sites/jeanbaptiste/2018/09/14/apple-watch-4-is-now-an-fda-class-2-medical-device-detects-falls-irregular-heart-rhythm/?sh=2590a5a42071 (Last visited March 16 2021).
    Willian Smith, Startup Spotlight: Arterys’ AI-powered medical imaging, Healthcare (June 22, 2020), https://healthcareglobal.com/technology-and-ai-3/startup-spotlight-arterys-ai-powered-medical-imaging (Last visited March 16, 2021).
    Yale New Haven Health Undertakes Real-world Evaluation of DreaMed Diabetes’s Advisor Pro Through Virtual Clinic, BUSINESSWIRE (March 15, 2021), https://www.businesswire.com/news/home/20210315005495/en/Yale-New-Haven-Health-Undertakes-Real-world-Evaluation-of-DreaMed-Diabetes%E2%80%99s-Advisor-Pro-Through-Virtual-Clinic (Last visited 13 March, 2021).

    QR CODE