簡易檢索 / 詳目顯示

研究生: 曾兆綦
Tseng, Chao-Chi
論文名稱: 以碳氫化合物熱裂解法製備碳包覆奈米高熵合金顆粒
Carbon encapsulation of high-entropy alloy nanoparticles by catalytic pyrolysis of hydrocarbons
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 連德軒
Lien, Der-Hsien
薛森鴻
Syue, Sen-Hong
呂昇益
Lu, Sheng-Yi
朱永祺
Chu, Yung-Chi
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 82
中文關鍵詞: 奈米碳管高熵合金奈米顆粒碳氫化合物熱裂解法
外文關鍵詞: carbon nanotubes, high-entropy alloy nanoparticles, catalytic pyrolysis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於具有獨特的性質和應用科技開發潛力,高熵合金已成為材料界極感興趣的研究目標。高熵合金是由四個以上的主要元素,以等莫爾比方式組成,因此本質上,它們的構型熵大於單一元素組成的合金。不過,在低維度時不僅表面能會增加,且會出現類似原子成簇的傾向,而使製造奈米顆粒變得極為困難。此論文中展示如何以簡單的製程於奈米碳管中合成出高熵合金奈米顆粒。電子顯微鏡和元素分析的結果皆證實被碳層所包覆的奈米顆粒為固溶相,且有些部分被碳化物環繞,組成成分元素為四元至五元的多域結構。多域結構和非磁性中心所產生的硬化現象,會顯著提高室溫下的矯頑磁場。較高的飽和磁場是源於合金化的過程會使電子重新分布到較高的能階。被碳層所包覆的高熵合金奈米顆粒其構型熵落在與塊材高熵合金相似的範圍中。

    第一章 介紹奈米碳管和高熵合金的背景,包括碳管的結構、高熵合金的定義以及兩個主題分別的合成方法。

    第二章 說明本論文使用的實驗設定和儀器介紹。

    第三章 透過電子顯微鏡和成分分析證明本論文的方法可以製備出的高熵合金奈米顆粒,同時其磁性質和多域的現象也將在此章節中被討論。

    第四章 總結以上實驗結果。


    Owing to their unique properties and technological potential, high entropy alloys (HEAs) have become the subject of great interest in the materials science community. HEAs consist of more than four principle elements in equimolar ratio so their configurational entropy is intrinsically greater than one principle element based. The increasing surface energy and chemical tendency toward clustering of like atoms at low dimension, however, make production of HEA-nanoparticles (HEA-NPs) extremely difficult. A facile production of HEA-NPs inside carbon nanotubes and nanoparticles is demonstrated in this work. Electron microscopic and elemental analyses confirm encapsulated to be solution phase; some embrace carbides and form multidomains with chemical composition ranging from quaternary to quinary phase. Multidomains and nonmagnetic centers create hardening thus promoting coercivity significantly at room temperature. Alloying induces electron redistribution into high spin states, accounting for observed high saturation. Configurational entropy of encapsulated HEA-NPs lies on a range comparable with bulk.

    Chapter 1 introduces the background of carbon nanotubes (CNTs) and HEAs, including the structure of CNTs, definition of HEAs and the synthetic method of both structures.

    Chapter 2 describes the experimental setups and characterization techniques employed in this thesis.

    Chapter 3 discusses results, including electron microscopic and elemental analyses. Analyses further reveal that encapsulated NPs consist of multidomains thus creating a significant coercivity (Hc) ever reached by existing soft magnetic materials at room temperature (T). A high saturation (Ms) due to alloying induced electron redistribution is also observed.

    Chapter 4 concludes the experimental results.

    Contents Abstract I 摘要 III 致謝 IV Contents V Figure Captions VII Tabel lists XII Chapter 1 Introduction & Literature Review 1 1-1 Carbon nanotubes 1 1-1-1 Structure of carbon nanotubes 1 1-1-2 Synthesis of carbon nanotubes 4 1-1-3 Synthesis of Fe-filled carbon nanotubes 8 1-2 High entropy alloys (HEAs) 10 1-2-1 Definition of high-entropy alloy 11 1-2-2 Four Core Effects of HEAs 11 1-2-3 The fabrication processes of high-entropy alloys 20 1-2-4 The fabrication processes of HEA-NPs 26 1-3 Density Functional Theory and virtual-crystal approximation 33 Chapter 2 Experimental Section 35 2-1 Drugs and Kits 35 2-2 Characterization Instruments 36 Chapter 3. Carbon Encapsulation of High Entropy Alloy Nanoparticles with Extraordinary Coercivity and Saturation at Room Temperature 40 3-1 Introduction 40 3-2 Synthesis of HEA-NPs inside Graphitic Shells 40 3-3 Characteristic Analysis 41 3-4 Coexistence of multiple structure in individual NPs 51 3-5 Configurational entropy of encapsulated HEA-NPs 64 3-6 Magnetic property of encapsulated HEA-NPs 65 Chapter 4. Conclusions 70 References 71

    References
    [1] M.S.G.D.P.C.E. Dresselhaus, Science of Fullerenes and Carbon Nanotubes, Academic Press, 1996.
    [2] M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes, Advances in Physics 49(6) (2000) 705-814.
    [3] S. Iijima, Helical microtubules of graphitic carbon, Nature 354(6348) (1991) 56-58.
    [4] B.I. Yakobson, R.E. Smalley, Fullerene Nanotubes: C <sub>1,000,000</sub> and Beyond: Some unusual new molecules—long, hollow fibers with tantalizing electronic and mechanical properties—have joined diamonds and graphite in the carbon family, American Scientist 85(4) (1997) 324-337.
    [5] S. Iijima, P. Ajayan, Smallest carbon nanotube, Nature 358 (1992) 23-23.
    [6] T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 358(6383) (1992) 220-222.
    [7] J.C. Charlier, J.P. Michenaud, Energetics of multilayered carbon tubules, Physical Review Letters 70(12) (1993) 1858-1861.
    [8] E.F. Kukovitsky, S.G. L'Vov, N.A. Sainov, V.A. Shustov, L.A. Chernozatonskii, Correlation between metal catalyst particle size and carbon nanotube growth, Chemical Physics Letters 355(5) (2002) 497-503.
    [9] H. Kanzow, P. Bernier, A. Ding, Lower limit for single-wall carbon nanotube diameters from hydrocarbons and fullerenes, Applied Physics A 74(3) (2002) 411-414.
    [10] L. Kim, E.-m. Lee, S.-J. Cho, J.S. Suh, Diameter control of carbon nanotubes by changing the concentration of catalytic metal ion solutions, Carbon 43(7) (2005) 1453-1459.
    [11] Y.C. Choi, Y.M. Shin, S.C. Lim, D.J. Bae, Y.H. Lee, B.S. Lee, D.-C. Chung, Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition, Journal of Applied Physics 88(8) (2000) 4898-4903.
    [12] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363(6430) (1993) 603-605.
    [13] N. Wang, Z.K. Tang, G.D. Li, J.S. Chen, Materials science: Single-walled 4 A carbon nanotube arrays, Nature 408 (2000) 50+.
    [14] Q.H. Yang, S. Bai, J.L. Sauvajol, J.B. Bai, Large-Diameter Single-Walled Carbon Nanotubes Synthesized by Chemical Vapor Deposition, Advanced Materials 15(10) (2003) 792-795.
    [15] Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, T. Hayashi, Interlayer spacings in carbon nanotubes, Physical Review B 48(3) (1993) 1907-1909.
    [16] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chemical Physics Letters 204(3) (1993) 277-282.
    [17] C.H. Kiang, M. Endo, P.M. Ajayan, G. Dresselhaus, M.S. Dresselhaus, Size Effects in Carbon Nanotubes, Physical Review Letters 81(9) (1998) 1869-1872.
    [18] C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388(6644) (1997) 756-758.
    [19] A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes, Science 275(5297) (1997) 187.
    [20] H.M. Cheng, F. Li, X. Sun, S.D.M. Brown, M.A. Pimenta, A. Marucci, G. Dresselhaus, M.S. Dresselhaus, Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, Chemical Physics Letters 289(5) (1998) 602-610.
    [21] J.F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Kónya, A. Fonseca, C. Laurent, J.B. Nagy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method, Chemical Physics Letters 317(1) (2000) 83-89.
    [22] J.F. Colomer, J.M. Benoit, C. Stephan, S. Lefrant, G. Van Tendeloo, J. B.Nagy, Characterization of single-wall carbon nanotubes produced by CCVD method, Chemical Physics Letters 345(1) (2001) 11-17.
    [23] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B 108(52) (2004) 19912-19916.
    [24] J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles, Chemical Physics Letters 296(1) (1998) 195-202.
    [25] J. Kong, A.M. Cassell, H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chemical Physics Letters 292(4) (1998) 567-574.
    [26] S. Tang, Z. Zhong, Z. Xiong, L. Sun, L. Liu, J. Lin, Z.X. Shen, K.L. Tan, Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts, Chemical Physics Letters 350(1) (2001) 19-26.
    [27] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C60: a new form of carbon, Nature 347(6291) (1990) 354-358.
    [28] M.L. Terranova, V. Sessa, M. Rossi, The World of Carbon Nanotubes: An Overview of CVD Growth Methodologies, Chemical Vapor Deposition 12(6) (2006) 315-325.
    [29] Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes, Nature 394(6694) (1998) 631-632.
    [30] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-Scale Synthesis of Aligned Carbon Nanotubes, Science 274(5293) (1996) 1701.
    [31] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Continuous production of aligned carbon nanotubes: a step closer to commercial realization, Chemical Physics Letters 303(5) (1999) 467-474.
    [32] C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition, Applied Physics Letters 77(17) (2000) 2767-2769.
    [33] D. Novković, I. Vukanac, Z. Milošević, The Mechanism of Detection of Air Pollution by an Ionization Chamber, Isotopes in Environmental and Health Studies 36(3) (2000) 241-254.
    [34] G.H. Lee, S.H. Huh, J.W. Jeong, H.C. Ri, Excellent magnetic properties of fullerene encapsulated ferromagnetic nanoclusters, Journal of Magnetism and Magnetic Materials 246(3) (2002) 404-411.
    [35] J.S. Lee, G.H. Gu, H. Kim, J.S. Suh, I. Han, N.S. Lee, J.M. Kim, G.-S. Park, Well-ordered Co nanowire arrays for aligned carbon nanotube arrays, Synthetic Metals 124(2) (2001) 307-310.
    [36] A.K. Sinha, D.W. Hwang, L.-P. Hwang, A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method, Chemical Physics Letters 332(5) (2000) 455-460.
    [37] L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, J.L.S. Wang, Decoration of activated carbon nanotubes with copper and nickel, Carbon 38(3) (2000) 363-372.
    [38] P.C.P. Watts, W.K. Hsu, V. Kotzeva, G.Z. Chen, Fe-filled carbon nanotube-polystyrene: RCL composites, Chemical Physics Letters 366(1) (2002) 42-50.
    [39] C.-h. Kiang, Electron irradiation induced dimensional change in bismuth filled carbon nanotubes, Carbon 38(11) (2000) 1699-1701.
    [40] X.P. Gao, Y. Lan, G.L. Pan, F. Wu, J.Q. Qu, D.Y. Song, P.W. Shen, Electrochemical Hydrogen Storage by Carbon Nanotubes Decorated with Metallic Nickel, Electrochemical and Solid-State Letters 4(10) (2001) A173.
    [41] M.R. Pederson, J.Q. Broughton, Nanocapillarity in fullerene tubules, Physical Review Letters 69(18) (1992) 2689-2692.
    [42] E.C. Linganiso, G. Chimowa, P.J. Franklyn, S. Bhattacharyya, N.J. Coville, The effect of tube filling on the electronic properties of Fe filled carbon nanotubes, Materials Chemistry and Physics 132(2) (2012) 300-308.
    [43] P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Opening carbon nanotubes with oxygen and implications for filling, Nature 362(6420) (1993) 522-525.
    [44] S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, A simple chemical method of opening and filling carbon nanotubes, Nature 372(6502) (1994) 159-162.
    [45] R. Sen, A. Govindaraj, C.N.R. Rao, Metal-Filled and Hollow Carbon Nanotubes Obtained by the Decomposition of Metal-Containing Free Precursor Molecules, Chemistry of Materials 9(10) (1997) 2078-2081.
    [46] P.J.F. Harris, S.C. Tsang, A simple technique for the synthesis of filled carbon nanoparticles, Chemical Physics Letters 293(1) (1998) 53-58.
    [47] N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R.M. Walton, M. Terrones, H. Terrones, P. Redlich, M. Rühle, R. Escudero, F. Morales, Enhanced magnetic coercivities in Fe nanowires, Applied Physics Letters 75(21) (1999) 3363-3365.
    [48] S. Liu, X. Tang, Y. Mastai, I. Felner, A. Gedanken, Preparation and characterization of iron-encapsulating carbon nanotubes and nanoparticles, Journal of Materials Chemistry 10(11) (2000) 2502-2506.
    [49] J. Sloan, J. Hammer, M. Zwiefka-Sibley, M. L. H. Green, J. Sloan, The opening and filling of single walled carbon nanotubes (SWTs), Chemical Communications (3) (1998) 347-348.
    [50] C.N.R. Rao, A. Govindaraj, R. Sen, B.C. Satishkumar, Synthesis of multi-walled and single-walled nanotubes, aligned-nanotube bundles and nanorods by employing organometallic precursors, Material Research Innovations 2(3) (1998) 128-141.
    [51] R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes, Advanced Materials 16(5) (2004) 401-405.
    [52] I. Mönch, A. Meye, A. Leonhardt, K. Krämer, R. Kozhuharova, T. Gemming, M.P. Wirth, B. Büchner, Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells, Journal of Magnetism and Magnetic Materials 290-291 (2005) 276-278.
    [53] L. Sun, F. Banhart, A.V. Krasheninnikov, J.A. Rodríguez-Manzo, M. Terrones, P.M. Ajayan, Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders, Science 312(5777) (2006) 1199.
    [54] A.L.M. Reddy, M.M. Shaijumon, S. Ramaprabhu, Alloy hydride catalyst route for the synthesis of single-walled carbon nanotubes, multi-walled carbon nanotubes and magnetic metal-filled multi-walled carbon nanotubes, Nanotechnology 17(21) (2006) 5299-5305.
    [55] D.-C. Li, L. Dai, S. Huang, A.W.H. Mau, Z.L. Wang, Structure and growth of aligned carbon nanotube films by pyrolysis, Chemical Physics Letters 316(5) (2000) 349-355.
    [56] S. Qu, F. Huang, S. Yu, G. Chen, J. Kong, Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles, Journal of Hazardous Materials 160(2) (2008) 643-647.
    [57] A. Leonhardt, M. Ritschel, R. Kozhuharova, A. Graff, T. Mühl, R. Huhle, I. Mönch, D. Elefant, C.M. Schneider, Synthesis and properties of filled carbon nanotubes, Diamond and Related Materials 12(3) (2003) 790-793.
    [58] 黃國雄, 等莫耳比多元合金系統之研究, 國立清華大學材料研究所, 1996.
    [59] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials 6(5) (2004) 299-303.
    [60] J.W. Yeh, Recent progress in high-entropy alloys, Annales de Chimie Science des Materiaux (Paris) 31(6) (2006) 633-648.
    [61] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Advanced Engineering Materials 10(6) (2008) 534-538.
    [62] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science 61 (2014) 1-93.
    [63] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Materials Chemistry and Physics 103(1) (2007) 41-46.
    [64] 葉均蔚, 高熵合金的發展, 華岡工程學報 27 (2011) 1-8.
    [65] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metallurgical and Materials Transactions A 35(8) (2004) 2533-2536.
    [66] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765.
    [67] Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh, S.-J. Lin, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys, Journal of Alloys and Compounds 509(5) (2011) 1607-1614.
    [68] C.-L. Lu, S.-Y. Lu, J.-W. Yeh, W.-K. Hsu, Thermal expansion and enhanced heat transfer in high-entropy alloys, Journal of Applied Crystallography 46(3) (2013) 736-739.
    [69] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897.
    [70] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A 36(4) (2005) 881-893.
    [71] C.-W. Tsai, Y.-L. Chen, M.-H. Tsai, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, Journal of Alloys and Compounds 486(1) (2009) 427-435.
    [72] C.-Y. Hsu, C.-C. Juan, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, S.-K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys, Materials Science and Engineering: A 528(10) (2011) 3581-3588.
    [73] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706.
    [74] M.-H. Tsai, C.-W. Wang, C.-W. Tsai, W.-J. Shen, J.-W. Yeh, J.-Y. Gan, W.-W. Wu, Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization, Journal of The Electrochemical Society 158(11) (2011) H1161.
    [75] M.-H. Tsai, J.-W. Yeh, J.-Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films 516(16) (2008) 5527-5530.
    [76] T.-T. Shun, C.-H. Hung, C.-F. Lee, Formation of ordered/disordered nanoparticles in FCC high entropy alloys, Journal of Alloys and Compounds 493(1) (2010) 105-109.
    [77] W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Materialia 68(7) (2013) 526-529.
    [78] C.-C. Juan, C.-Y. Hsu, C.-W. Tsai, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, S.-K. Chen, On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys, Intermetallics 32 (2013) 401-407.
    [79] 張天豪, 含硼新型硬面焊合金之磨耗研究, 國立清華大學材料工程學系, 國立清華大學, 2014.
    [80] A. Kumar, M. Gupta, An Insight into Evolution of Light Weight High Entropy Alloys: A Review, Metals 6(9) (2016).
    [81] K. Tseng, Y. Yang, C. Juan, T. Chin, C. Tsai, J. Yeh, A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35, Science China Technological Sciences 61(2) (2018) 184-188.
    [82] Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity and Malleability, Scientific Reports 3(1) (2013) 1455.
    [83] D.T.J. Hurle, Mechanisms of growth of metal single crystals from the melt, Progress in Materials Science 10 (1963) 81-IN15.
    [84] S.G. Ma, S.F. Zhang, M.C. Gao, P.K. Liaw, Y. Zhang, A Successful Synthesis of the CoCrFeNiAl0.3 Single-Crystal, High-Entropy Alloy by Bridgman Solidification, JOM 65(12) (2013) 1751-1758.
    [85] D.L. Zhang, Processing of advanced materials using high-energy mechanical milling, Progress in Materials Science 49(3) (2004) 537-560.
    [86] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science 46(1) (2001) 1-184.
    [87] G.M. Tomboc, T. Kwon, J. Joo, K. Lee, High entropy alloy electrocatalysts: a critical assessment of fabrication and performance, Journal of Materials Chemistry A 8(30) (2020) 14844-14862.
    [88] Book Reviews, MRS Bulletin 17(12) (1992) 51-53.
    [89] A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, in: S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Eds.), Synthesis of Inorganic Nanomaterials, Woodhead Publishing2018, pp. 121-139.
    [90] T. Löffler, A. Savan, A. Garzón-Manjón, M. Meischein, C. Scheu, A. Ludwig, W. Schuhmann, Toward a Paradigm Shift in Electrocatalysis Using Complex Solid Solution Nanoparticles, ACS Energy Letters 4(5) (2019) 1206-1214.
    [91] F. Waag, Y. Li, A.R. Ziefuß, E. Bertin, M. Kamp, V. Duppel, G. Marzun, L. Kienle, S. Barcikowski, B. Gökce, Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles, RSC Advances 9(32) (2019) 18547-18558.
    [92] M.D. Cropper, Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition, Applied Surface Science 455 (2018) 153-159.
    [93] B. Westenhaus, On the Path to Full Spectrum Photovoltaic Solar Cells, NEW ENERGY AND FUEL, 2010.
    [94] V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, P. Gillon, Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy, Materials Chemistry and Physics 117(1) (2009) 142-147.
    [95] V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, P. Gillon, Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis, Surface and Coatings Technology 204(12) (2010) 1989-1992.
    [96] K.-H. Cheng, C.-H. Lai, S.-J. Lin, J.-W. Yeh, Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering, Thin Solid Films 519(10) (2011) 3185-3190.
    [97] M. Sajid, J. Płotka-Wasylka, Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences, Microchemical Journal 154 (2020) 104623.
    [98] J.M. Cowley, Short-Range Order and Long-Range Order Parameters, Physical Review 138(5A) (1965) A1384-A1389.
    [99] P.-C. Chen, X. Liu, J.L. Hedrick, Z. Xie, S. Wang, Q.-Y. Lin, M.C. Hersam, V.P. Dravid, C.A. Mirkin, Polyelemental nanoparticle libraries, Science 352(6293) (2016) 1565.
    [100] H.-D. Yu, M.D. Regulacio, E. Ye, M.-Y. Han, Chemical routes to top-down nanofabrication, Chemical Society Reviews 42(14) (2013) 6006-6018.
    [101] M.Y. Rekha, N. Mallik, C. Srivastava, First Report on High Entropy Alloy Nanoparticle Decorated Graphene, Scientific Reports 8(1) (2018) 8737.
    [102] F.A.A. Nugroho, B. Iandolo, J.B. Wagner, C. Langhammer, Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics, ACS Nano 10(2) (2016) 2871-2879.
    [103] Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M.R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science 359(6383) (2018) 1489.
    [104] D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature 451(7182) (2008) 1085-1089.
    [105] X. Xu, Y. Du, C. Wang, Y. Guo, J. Zou, K. Zhou, Z. Zeng, Y. Liu, L. Li, High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors, Journal of Alloys and Compounds 822 (2020) 153642.
    [106] D.R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, Mathematical Proceedings of the Cambridge Philosophical Society 24(1) (1928) 89-110.
    [107] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review 136(3B) (1964) B864-B871.
    [108] W. Kohn, Variational Methods for Periodic Lattices, Physical Review 87(3) (1952) 472-481.
    [109] W. Kohn, J.M. Luttinger, Quantum Theory of Electrical Transport Phenomena, Physical Review 108(3) (1957) 590-611.
    [110] W. Kohn, Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian, Physical Review 115(6) (1959) 1460-1478.
    [111] W. Kohn, J.M. Luttinger, Ground-State Energy of a Many-Fermion System, Physical Review 118(1) (1960) 41-45.
    [112] W. Kohn, Y. Meir, D.E. Makarov, van der Waals Energies in Density Functional Theory, Physical Review Letters 80(19) (1998) 4153-4156.
    [113] W. Kohn, Nobel Lecture: Electronic structure of matter---wave functions and density functionals, Reviews of Modern Physics 71(5) (1999) 1253-1266.
    [114] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review 140(4A) (1965) A1133-A1138.
    [115] M.P.D.J.T. Allen, Computer Simulation of Liquids, Oxford Science Publications1987.
    [116] J.-J. Ding, C.-L. Lu, W.-K. Hsu, Capacitive carbon nanotube networks in polymer composites, Applied Physics Letters 99(3) (2011) 033111.
    [117] N.J. Ramer, A.M. Rappe, Virtual-crystal approximation that works: Locating a compositional phase boundary in $\mathrm{Pb}({\mathrm{Zr}}_{1\ensuremath{-}x}{\mathrm{Ti}}_{x}){\mathrm{O}}_{3}$, Physical Review B 62(2) (2000) R743-R746.
    [118] L. Bellaiche, D. Vanderbilt, Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites, Physical Review B 61(12) (2000) 7877-7882.
    [119] B. Winkler, C. Pickard, V. Milman, Applicability of a quantum mechanical `virtual crystal approximation' to study Al/Si-disorder, Chemical Physics Letters 362(3) (2002) 266-270.
    [120] A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition, Journal of Crystal Growth 32(3) (1976) 335-349.
    [121] V.V. Kovalevski, A.N. Safronov, Pyrolysis of hollow carbons on melted catalyst, Carbon 36(7) (1998) 963-968.
    [122] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.
    [123] S. Liu, Y. Zhou, X. Xing, J. Wang, X. Ren, Q. Yang, Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy, Scientific Reports 6 (2016) 32941.
    [124] P. Vashishta, R.K. Kalia, A. Nakano, J.P. Rino, Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide, Journal of Applied Physics 101(10) (2007) 103515.
    [125] W.C. Chiou, E.A. Carter, Structure and stability of Fe3C-cementite surfaces from first principles, Surface Science 530(1) (2003) 88-100.
    [126] S. Cho, K. Kikuchi, E. Lee, M. Choi, I. Jo, S.-B. Lee, S.-K. Lee, A. Kawasaki, Chromium carbide/Carbon Nanotube Hybrid Structure Assisted Copper Composites with Low Temperature Coefficient of Resistance, Scientific Reports 7(1) (2017) 14943.
    [127] Z. Zhao, H. Zheng, Y. Wang, S. Mao, J. Niu, Y. Chen, M. Shang, Synthesis of chromium carbide (Cr3C2) nanopowders by the carbonization of the precursor, International Journal of Refractory Metals and Hard Materials 29(5) (2011) 614-617.
    [128] B.-J. Lee, On the stability of Cr carbides, Calphad 16(2) (1992) 121-149.
    [129] L.J.E. Hofer, E.M. Cohn, W.C. Peebles, Isothermal Decomposition of the Carbide in a Carburized Cobalt Fischer-Tropsch Catalyst, The Journal of Physical and Colloid Chemistry 53(5) (1949) 661-669.
    [130] B.H. Davis, M.L. Occelli, Advances in Fischer-Tropsch synthesis, catalysts, and catalysis, CRC press2009.
    [131] J.A. Tebboth, The decomposition of carbon monoxide by nickel catalysts. The reaction mechanism between 250° and 450°, Journal of the Society of Chemical Industry 67(2) (1948) 62-66.
    [132] R. Kumari, L. Krishnia, V. Kumar, S. Singh, H.K. Singh, R.K. Kotnala, R.R. Juluri, U.M. Bhatta, P.V. Satyam, B.S. Yadav, Z. Naqvi, P.K. Tyagi, Fe3C-filled carbon nanotubes: permanent cylindrical nanomagnets possessing exotic magnetic properties, Nanoscale 8(7) (2016) 4299-4310.
    [133] D. Liu, J. Zhu, S. Ivaturi, Y. He, S. Wang, J. Wang, S. Zhang, M.A.C. Willis, F.S. Boi, Giant magnetic coercivity in Fe3C-filled carbon nanotubes, RSC Advances 8(25) (2018) 13820-13825.
    [134] X. Jin, X. Gu, F. Quan, X. Ran, K. Zhang, A. Mao, CoCrFeMnNi high-entropy alloy powder with excellent corrosion resistance and soft magnetic property prepared by gas atomization method, Materialwissenschaft und Werkstofftechnik 50(7) (2019) 837-843.
    [135] W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics 56 (2015) 24-27.
    [136] H. Kronmüller, K.D. Durst, M. Sagawa, Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets, Journal of Magnetism and Magnetic Materials 74(3) (1988) 291-302.
    [137] L. Callegaro, E. Puppin, S. Ricci, Barkhausen noise and size effects in magnetic microstructures, Journal of Applied Physics 90(5) (2001) 2416-2421.
    [138] A. Hossain, R. Islam, First Principles Investigation of FeCo Alloy: Electronic and Optical Properties Study, Engineering Physics 3(1) (2019) 1.

    QR CODE