研究生: |
高偉智 Kao, Wei-Chih |
---|---|
論文名稱: |
一個十二位元每秒八千萬次取樣連續漸進式類比數位轉換器 A 12-Bit 80MS/s Successive-Approximation Analog-to-Digital Converter |
指導教授: |
朱大舜
Chu, Ta-Shun |
口試委員: |
王毓駒
Wang, Yu-Jiu 吳仁銘 WU, Jen-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 連續漸進式 、類比數位轉換器 、高速類比數位轉換器 |
外文關鍵詞: | Successive-Approximation, Analog-to-Digital Converter, High Speed Analog-to-Digital Converter |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技快速的發展,通訊系統對於資料傳輸的速度及精確度的規格需求更加苛刻,使得設計更快速的高速電路架構成為當代工程師的目標,5G通訊技術提供極高的傳輸速度,使人類在進行通話時有更好的品質,以及透過視訊來面對面交談,而在這些通訊技術的應用背後,類比數位轉換器是系統中不可或缺的電路,是唯一可以將生活中的類比訊號轉換成數位訊號的電路,針對不同應用,衍生出許多不同類型的類比數位轉換器,而隨著半導體製程的演進,連續漸進式類比數位轉換器成為近年來熱門的選擇。
本論文實現了一個高速帶冗餘位連續漸進式類比數位轉換器,在每秒八千萬次取樣的速度下,使用了帶冗餘位演算法的概念達到速度上的提升,並且提出一個新穎的數位邏輯控制電路來更進一步減少轉換過程的延遲。此類比數位轉換器具有高速的特性,可以用於時序交錯式的類比數位轉換器,透過通道並聯的特性,達到速度上的提升。
本論文之十二位元連續漸進式類比數位轉換器利用台積電六五奈米的CMOS製程來設計,最高取樣頻率為每秒八千萬取樣點,操作電壓為1.2V,軌對軌輸入訊號的振幅為1.8V,模擬結果中訊號與雜訊諧波比可達到70.48dB,相當於有效位元為11.4,DNL為+0.03/-0.03LSB,INL為+0.04/-0.05 LSB,平均消耗功率為3.554mW。
The lives of humans have undergone significant changes due to the evolution of wireless
communication technology. 5th generation wireless system provides extremely high data transmission
speeds. Enabling humans to have a better quality when conducting calls, and face-to-face
conversations through video. Behind these applications, the analog-to-digital converter is an
indispensable circuit in the system. It is the only circuit that can convert the analog signal in life into
a digital signal. For different applications, many different types of analog-to-digital converters are
derived. With the scaling of semiconductor manufacturing processes, the Successive Approximation
Register Analog-to-Digital Converters have become a popular choice in recent years.
In the thesis, we have proposed a high-speed SAR ADC. It combines the redundancy algorithm
to speed up the conversion rate and does not increase the capacitance of sampling capacitor .A novel
digital logic control circuit is proposed to further decrease the delay of conversion.
The 12 bits SAR ADC is implemented in a TSMC 65 nm CMOS process with 1.2V supply
voltage. The full rail-to-rail input swing is 1.8V peak to peak. This design achieve signal to noise and
distortion ratio of 70.48dB, equivalent to the effective number of bits 11.4. The peak DNL values are
-0.03 to +0.03 LSB and the peak INL values are -0.05 to +0.04 LSB. The average power consumption
is 3.554mW.
[1] J. L. McCreary and P. R. Gray, "All-MOS charge redistribution analog-to-digital conversion
techniques. I," in IEEE Journal of Solid-State Circuits, vol. 10, no. 6, pp. 371-379, Dec. 1975.
[2] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic
Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp.
731-740, April 2010.
[3] B. P. Ginsburg and A. P. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split
Capacitor Array DAC," in IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739-747,
April 2007.
[4] V. Hariprasath, J. Guerber, S. -. Lee and U. -. Moon, "Merged capacitor switching based SAR
ADC with highest switching energy-efficiency," in Electronics Letters, vol. 46, no. 9, pp.
620-621, 29 April 2010.
[5] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal
of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
[6] A. Sanyal and N. Sun, "A very high energy-efficiency switching technique for SAR
ADCs," 2013 IEEE 56th International Midwest Symposium on Circuits and Systems
(MWSCAS), Columbus, OH, 2013, pp. 229-232.
[7] Z. Zhu, Y. Xiao and X. Song, "VCM-based monotonic capacitor switching scheme for SAR
ADC," in Electronics Letters, vol. 49, no. 5, pp. 327-329, 28 February 2013.
[8] C. Yuan and Y. Lam, "Low-energy and area-efficient tri-level switching scheme for SAR
ADC," in Electronics Letters, vol. 48, no. 9, pp. 482-483, 26 April 2012.
[9] L. Xie, G. Wen, J. Liu and Y. Wang, "Energy-efficient hybrid capacitor switching scheme for
SAR ADC," in Electronics Letters, vol. 50, no. 1, pp. 22-23, 2 January 2014.
[10] B. Murmann, "ADC Performance Survey 1997-2020," [Online]. Available:
http://web.stanford.edu/~murmann/adcsurvey.html.
[11] S. M. Chen and R. W. Brodersen, "A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-um
CMOS," in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
[12] F. Kuttner, “A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13μm
CMOS,” 2002 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap. (Cat. No.02CH37315), vol.
1, pp. 176–177, 2002
[13] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, H. San, and N. Takai, “SAR ADC algorithm
with redundancy,” IEEE Asia-Pacific Conf. Circuits Syst. Proceedings, APCCAS, no. 2, pp.
102
268–271, 2008.
[14] C. C. Liu et al., “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,”
Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., vol. 53, pp. 386–387, 2010.
[15] B. Murmann, “On the Use of Redundancy in Successive Approximation A/D Converters,” Proc.
10th Int. Conf. Sampl. Theory Appl., pp. 556–559, 2013.
[16] C. C. Liu, C. H. Kuo, and Y. Z. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac
Applications in 20 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2645–2654,
2015.
[17] J. Tsai et al., “A 0.003mm 10b 240MS/s 0.7mW SAR ADC in 28 nm CMOS With Digital Error
Correction and Correlated-Reversed Switching,” IEEE J. Solid-State Circuits, vol. 50, no. 6,
pp. 1382–1398, 2015.
[18] W. Liu et al., "A 600MS/s 30mW 0.13μm CMOS ADC array achieving over 60dB SFDR with
adaptive digital equalization," 2009 IEEE International Solid-State Circuits Conference -
Digest of Technical Papers, San Francisco, CA, 2009, pp. 82-83,83a.
[19] N. Le Dortz et al., "22.5 A 1.62GS/s time-interleaved SAR ADC with digital background
mismatch calibration achieving interleaving spurs below 70dBFS," 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014,
pp. 386-388.
[20] C. Lin, Y. Wei and T. Lee, "27.7 A 10b 2.6GS/s time-interleaved SAR ADC with background
timing-skew calibration," 2016 IEEE International Solid-State Circuits Conference (ISSCC),
San Francisco, CA, 2016, pp. 468-469.
[21] Y. Lien, "A 4.5-mW 8-b 750-MS/s 2-b/step asynchronous subranged SAR ADC in 28-nm
CMOS technology," 2012 Symposium on VLSI Circuits (VLSIC), Honolulu, HI, 2012, pp. 88-
89.
[22] C. Chan, Y. Zhu, S. Sin, S. U and R. P. Martins, "A 3.8mW 8b 1GS/s 2b/cycle interleaving SAR
ADC with compact DAC structure," 2012 Symposium on VLSI Circuits (VLSIC), Honolulu,
HI, 2012, pp. 86-87.
[23] H. Wei et al., "An 8-b 400-MS/s 2-b-Per-Cycle SAR ADC With Resistive DAC," in IEEE
Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2763-2772, Nov. 2012.
[24] C. C. Lee and M. P. Flynn, "A SAR-Assisted Two-Stage Pipeline ADC," in IEEE Journal of
Solid-State Circuits, vol. 46, no. 4, pp. 859-869, April 2011.
[25] J. Wu, S. Chang, S. Lin, C. Huang and G. Huang, "Low power pipelined SAR ADC with
loading-free architecture," Technical Papers of 2014 International Symposium on VLSI Design,
103
Automation and Test, Hsinchu, 2014, pp. 1-4.
[26] Y. Zhu, C. Chan, S. Sin, U. Seng-Pan, R. P. Martins and F. Maloberti, "A 35 fJ 10b 160 MS/s
pipelined-SAR ADC with decoupled flip-around MDAC and self-embedded offset
cancellation," IEEE Asian Solid-State Circuits Conference 2011, Jeju, 2011, pp. 61-64.
[27] Young-Deuk Jeon et al., "A 9.15mW 0.22mm2 10b 204MS/s pipelined SAR ADC in 65nm
CMOS," IEEE Custom Integrated Circuits Conference 2010, San Jose, CA, 2010, pp. 1-4.
[28] M. Furuta, M. Nozawa and T. Itakura, "A 0.06mm2 8.9b ENOB 40MS/s pipelined SAR ADC
in 65nm CMOS," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San
Francisco, CA, 2010, pp. 382-383.
[29] J. Luo, J. Li, N. Ning, Y. Liu and Q. Yu, "A 0.9-V 12-bit 100-MS/s 14.6-fJ/Conversion-Step
SAR ADC in 40-nm CMOS," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 10, pp. 1980-1988, Oct. 2018.
[30] S. Wan et al., "A 10-bit 50-MS/s SAR ADC with techniques for relaxing the requirement on
driving capability of reference voltage buffers," 2013 IEEE Asian Solid-State Circuits
Conference (A-SSCC), Singapore, 2013, pp. 293-296.
[31] B. Verbruggen, M. Iriguchi and J. Craninckx, "A 1.7 mW 11b 250 MS/s 2-Times Interleaved
Fully Dynamic Pipelined SAR ADC in 40 nm Digital CMOS," in IEEE Journal of Solid-State
Circuits, vol. 47, no. 12, pp. 2880-2887, Dec. 2012.
[32] F. van der Goes et al., "A 1.5 mW 68 dB SNDR 80 Ms/s 2X Interleaved Pipelined SAR ADC
in 28 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2835-2845, Dec.
2014.
[33] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita and U. Moon, "Ring amplifiers
for switched-capacitor circuits," 2012 IEEE International Solid-State Circuits Conference, San
Francisco, CA, 2012, pp. 460-462.
[34] Y. Lim and M. P. Flynn, "A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC
Using Self-Biased Ring Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 50, no. 10,
pp. 2331-2341, Oct. 2015.
[35] Y. Lim and M. P. Flynn, "26.1 A 1mW 71.5dB SNDR 50MS/S 13b fully differential ringamplifier-
based SAR-assisted pipeline ADC," 2015 IEEE International Solid-State Circuits
Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
[36] C. Li, C. Chan, Y. Zhu and R. P. Martins, "Analysis of Reference Error in High-Speed SAR
ADCs With Capacitive DAC," in IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 66, no. 1, pp. 82-93, Jan. 2019.
104
[37] P. Harikumar and J. J. Wikner, "Design of a reference voltage buffer for a 10-bit 50 MS/s SAR
ADC in 65 nm CMOS," 2015 IEEE International Symposium on Circuits and Systems (ISCAS),
Lisbon, 2015, pp. 249-252.
[38] C. Li, C. Chan, Y. Zhu and R. P. Martins, "Analysis of Reference Error in High-Speed SAR
ADCs With Capacitive DAC," in IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 66, no. 1, pp. 82-93, Jan. 2019.
[39] Z. Cao, S. Yan and Y. Li, "A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13um CMOS," in
IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 862-873, March 2009.
[40] C. Lee, W. Kim, H. Kang and S. Ryu, "A Replica-Driving Technique for High Performance SC
Circuits and Pipelined ADC Design," in IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 60, no. 9, pp. 557-561, Sept. 2013.
[41] L. Kull et al., "A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate
comparators for enhanced speed in 32nm digital SOI CMOS," 2013 IEEE International Solid-
State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 468-469.
[42] R. Kapusta, J. Shen, S. Decker, H. Li and E. Ibaragi, "A 14b 80MS/s SAR ADC with 73.6dB
SNDR in 65nm CMOS," 2013 IEEE International Solid-State Circuits Conference Digest of
Technical Papers, San Francisco, CA, 2013, pp. 472-473.2
[43] A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital
converter," in IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999.
[44] G. Huang and P. Lin, "A fast bootstrapped switch for high-speed high-resolution A/D
converter," 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, 2010,
pp. 382-385.
[45] H. Chen, L. He, H. Deng, Y. Yin and F. Lin, "A high-performance bootstrap switch for low
voltage switched-capacitor circuits," 2014 IEEE International Symposium on Radio-Frequency
Integration Technology, Hefei, 2014, pp. 1-3.
[46] Fiedler, Horst L., et al. "A 5-bit building block for 20 MHz A/D converters." IEEE Journal of
Solid-State Circuits 16.3 (1981): 151-155.
[47] Kobayashi, Tsuguo, et al. "A current-controlled latch sense amplifier and a static power-saving
input buffer for low-power architecture." IEICE transactions on electronics 76.5 (1993): 863-
867.
[48] S. Babayan-Mashhadi and R. Lotfi, "Analysis and Design of a Low-Voltage Low-Power
Double-Tail Comparator," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 2, pp. 343-352, Feb. 2014.
105
[49] B. Wicht, T. Nirschl and D. Schmitt-Landsiedel, "Yield and speed optimization of a latch-type
voltage sense amplifier," in IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158,
July 2004.
[50] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink and B. Nauta, "A
10-bit Charge-Redistribution ADC Consuming 1.9uW at 1 MS/s," in IEEE Journal of Solid-
State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010.
[51] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, "A Double-Tail Latch-
Type Voltage Sense Amplifier with 18ps Setup+Hold Time," 2007 IEEE International Solid-
State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 314-605.
[52] J. He, S. Zhan, D. Chen and R. L. Geiger, "Analyses of Static and Dynamic Random Offset
Voltages in Dynamic Comparators," in IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 56, no. 5, pp. 911-919, May 2009.
[53] P. Nuzzo, F. De Bernardinis, P. Terreni and G. Van der Plas, "Noise Analysis of Regenerative
Comparators for Reconfigurable ADC Architectures," in IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 55, no. 6, pp. 1441-1454, July 2008.
[54] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched
comparators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7,
pp. 541-545, July 2006.
[55] Lei, Ka Meng & Mak, Pui-In & Martins, R.P.. (2013). Systematic analysis and cancellation of
kickback noise in a dynamic latched comparator. Analog Integrated Circuits and Signal
Processing. 77. 277-284.
[56] A. Bekal, R. Joshi, M. Goswami, B. R. Singh and A. Srivatsava, "An Improved Dynamic Latch
Based Comparator for 8-Bit Asynchronous SAR ADC," 2015 IEEE Computer Society Annual
Symposium on VLSI, Montpellier, 2015, pp. 178-182.
[57] S. Gambini and J. Rabaey, "Low-Power Successive Approximation Converter With 0.5 V
Supply in 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2348-
2356, Nov. 2007.
[58] R. Xu, B. Liu and J. Yuan, "Digitally Calibrated 768-kS/s 10-b Minimum-Size SAR ADC Array
With Dithering," in IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2129-2140, Sept.
2012.