簡易檢索 / 詳目顯示

研究生: 高偉智
Kao, Wei-Chih
論文名稱: 一個十二位元每秒八千萬次取樣連續漸進式類比數位轉換器
A 12-Bit 80MS/s Successive-Approximation Analog-to-Digital Converter
指導教授: 朱大舜
Chu, Ta-Shun
口試委員: 王毓駒
Wang, Yu-Jiu
吳仁銘
WU, Jen-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 連續漸進式類比數位轉換器高速類比數位轉換器
外文關鍵詞: Successive-Approximation, Analog-to-Digital Converter, High Speed Analog-to-Digital Converter
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技快速的發展,通訊系統對於資料傳輸的速度及精確度的規格需求更加苛刻,使得設計更快速的高速電路架構成為當代工程師的目標,5G通訊技術提供極高的傳輸速度,使人類在進行通話時有更好的品質,以及透過視訊來面對面交談,而在這些通訊技術的應用背後,類比數位轉換器是系統中不可或缺的電路,是唯一可以將生活中的類比訊號轉換成數位訊號的電路,針對不同應用,衍生出許多不同類型的類比數位轉換器,而隨著半導體製程的演進,連續漸進式類比數位轉換器成為近年來熱門的選擇。
    本論文實現了一個高速帶冗餘位連續漸進式類比數位轉換器,在每秒八千萬次取樣的速度下,使用了帶冗餘位演算法的概念達到速度上的提升,並且提出一個新穎的數位邏輯控制電路來更進一步減少轉換過程的延遲。此類比數位轉換器具有高速的特性,可以用於時序交錯式的類比數位轉換器,透過通道並聯的特性,達到速度上的提升。
    本論文之十二位元連續漸進式類比數位轉換器利用台積電六五奈米的CMOS製程來設計,最高取樣頻率為每秒八千萬取樣點,操作電壓為1.2V,軌對軌輸入訊號的振幅為1.8V,模擬結果中訊號與雜訊諧波比可達到70.48dB,相當於有效位元為11.4,DNL為+0.03/-0.03LSB,INL為+0.04/-0.05 LSB,平均消耗功率為3.554mW。


    The lives of humans have undergone significant changes due to the evolution of wireless
    communication technology. 5th generation wireless system provides extremely high data transmission
    speeds. Enabling humans to have a better quality when conducting calls, and face-to-face
    conversations through video. Behind these applications, the analog-to-digital converter is an
    indispensable circuit in the system. It is the only circuit that can convert the analog signal in life into
    a digital signal. For different applications, many different types of analog-to-digital converters are
    derived. With the scaling of semiconductor manufacturing processes, the Successive Approximation
    Register Analog-to-Digital Converters have become a popular choice in recent years.
    In the thesis, we have proposed a high-speed SAR ADC. It combines the redundancy algorithm
    to speed up the conversion rate and does not increase the capacitance of sampling capacitor .A novel
    digital logic control circuit is proposed to further decrease the delay of conversion.
    The 12 bits SAR ADC is implemented in a TSMC 65 nm CMOS process with 1.2V supply
    voltage. The full rail-to-rail input swing is 1.8V peak to peak. This design achieve signal to noise and
    distortion ratio of 70.48dB, equivalent to the effective number of bits 11.4. The peak DNL values are
    -0.03 to +0.03 LSB and the peak INL values are -0.05 to +0.04 LSB. The average power consumption
    is 3.554mW.

    第一章 簡介....................................................... 1 第二章 研究背景以及相關研究介紹................... 3 第三章 高速類比數位轉換器設計技術 ........... 26 第四章 帶冗餘位連續漸進式類比數位轉換器之設計....................43 第五章 結論與未來發展 ................................ 97 參考文獻......................... 98

    [1] J. L. McCreary and P. R. Gray, "All-MOS charge redistribution analog-to-digital conversion
    techniques. I," in IEEE Journal of Solid-State Circuits, vol. 10, no. 6, pp. 371-379, Dec. 1975.
    [2] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic
    Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp.
    731-740, April 2010.
    [3] B. P. Ginsburg and A. P. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split
    Capacitor Array DAC," in IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739-747,
    April 2007.
    [4] V. Hariprasath, J. Guerber, S. -. Lee and U. -. Moon, "Merged capacitor switching based SAR
    ADC with highest switching energy-efficiency," in Electronics Letters, vol. 46, no. 9, pp.
    620-621, 29 April 2010.
    [5] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal
    of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
    [6] A. Sanyal and N. Sun, "A very high energy-efficiency switching technique for SAR
    ADCs," 2013 IEEE 56th International Midwest Symposium on Circuits and Systems
    (MWSCAS), Columbus, OH, 2013, pp. 229-232.
    [7] Z. Zhu, Y. Xiao and X. Song, "VCM-based monotonic capacitor switching scheme for SAR
    ADC," in Electronics Letters, vol. 49, no. 5, pp. 327-329, 28 February 2013.
    [8] C. Yuan and Y. Lam, "Low-energy and area-efficient tri-level switching scheme for SAR
    ADC," in Electronics Letters, vol. 48, no. 9, pp. 482-483, 26 April 2012.
    [9] L. Xie, G. Wen, J. Liu and Y. Wang, "Energy-efficient hybrid capacitor switching scheme for
    SAR ADC," in Electronics Letters, vol. 50, no. 1, pp. 22-23, 2 January 2014.
    [10] B. Murmann, "ADC Performance Survey 1997-2020," [Online]. Available:
    http://web.stanford.edu/~murmann/adcsurvey.html.
    [11] S. M. Chen and R. W. Brodersen, "A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-um
    CMOS," in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
    [12] F. Kuttner, “A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13μm
    CMOS,” 2002 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap. (Cat. No.02CH37315), vol.
    1, pp. 176–177, 2002
    [13] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, H. San, and N. Takai, “SAR ADC algorithm
    with redundancy,” IEEE Asia-Pacific Conf. Circuits Syst. Proceedings, APCCAS, no. 2, pp.
    102
    268–271, 2008.
    [14] C. C. Liu et al., “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,”
    Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., vol. 53, pp. 386–387, 2010.
    [15] B. Murmann, “On the Use of Redundancy in Successive Approximation A/D Converters,” Proc.
    10th Int. Conf. Sampl. Theory Appl., pp. 556–559, 2013.
    [16] C. C. Liu, C. H. Kuo, and Y. Z. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac
    Applications in 20 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2645–2654,
    2015.
    [17] J. Tsai et al., “A 0.003mm 10b 240MS/s 0.7mW SAR ADC in 28 nm CMOS With Digital Error
    Correction and Correlated-Reversed Switching,” IEEE J. Solid-State Circuits, vol. 50, no. 6,
    pp. 1382–1398, 2015.
    [18] W. Liu et al., "A 600MS/s 30mW 0.13μm CMOS ADC array achieving over 60dB SFDR with
    adaptive digital equalization," 2009 IEEE International Solid-State Circuits Conference -
    Digest of Technical Papers, San Francisco, CA, 2009, pp. 82-83,83a.
    [19] N. Le Dortz et al., "22.5 A 1.62GS/s time-interleaved SAR ADC with digital background
    mismatch calibration achieving interleaving spurs below 70dBFS," 2014 IEEE International
    Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014,
    pp. 386-388.
    [20] C. Lin, Y. Wei and T. Lee, "27.7 A 10b 2.6GS/s time-interleaved SAR ADC with background
    timing-skew calibration," 2016 IEEE International Solid-State Circuits Conference (ISSCC),
    San Francisco, CA, 2016, pp. 468-469.
    [21] Y. Lien, "A 4.5-mW 8-b 750-MS/s 2-b/step asynchronous subranged SAR ADC in 28-nm
    CMOS technology," 2012 Symposium on VLSI Circuits (VLSIC), Honolulu, HI, 2012, pp. 88-
    89.
    [22] C. Chan, Y. Zhu, S. Sin, S. U and R. P. Martins, "A 3.8mW 8b 1GS/s 2b/cycle interleaving SAR
    ADC with compact DAC structure," 2012 Symposium on VLSI Circuits (VLSIC), Honolulu,
    HI, 2012, pp. 86-87.
    [23] H. Wei et al., "An 8-b 400-MS/s 2-b-Per-Cycle SAR ADC With Resistive DAC," in IEEE
    Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2763-2772, Nov. 2012.
    [24] C. C. Lee and M. P. Flynn, "A SAR-Assisted Two-Stage Pipeline ADC," in IEEE Journal of
    Solid-State Circuits, vol. 46, no. 4, pp. 859-869, April 2011.
    [25] J. Wu, S. Chang, S. Lin, C. Huang and G. Huang, "Low power pipelined SAR ADC with
    loading-free architecture," Technical Papers of 2014 International Symposium on VLSI Design,
    103
    Automation and Test, Hsinchu, 2014, pp. 1-4.
    [26] Y. Zhu, C. Chan, S. Sin, U. Seng-Pan, R. P. Martins and F. Maloberti, "A 35 fJ 10b 160 MS/s
    pipelined-SAR ADC with decoupled flip-around MDAC and self-embedded offset
    cancellation," IEEE Asian Solid-State Circuits Conference 2011, Jeju, 2011, pp. 61-64.
    [27] Young-Deuk Jeon et al., "A 9.15mW 0.22mm2 10b 204MS/s pipelined SAR ADC in 65nm
    CMOS," IEEE Custom Integrated Circuits Conference 2010, San Jose, CA, 2010, pp. 1-4.
    [28] M. Furuta, M. Nozawa and T. Itakura, "A 0.06mm2 8.9b ENOB 40MS/s pipelined SAR ADC
    in 65nm CMOS," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San
    Francisco, CA, 2010, pp. 382-383.
    [29] J. Luo, J. Li, N. Ning, Y. Liu and Q. Yu, "A 0.9-V 12-bit 100-MS/s 14.6-fJ/Conversion-Step
    SAR ADC in 40-nm CMOS," in IEEE Transactions on Very Large Scale Integration (VLSI)
    Systems, vol. 26, no. 10, pp. 1980-1988, Oct. 2018.
    [30] S. Wan et al., "A 10-bit 50-MS/s SAR ADC with techniques for relaxing the requirement on
    driving capability of reference voltage buffers," 2013 IEEE Asian Solid-State Circuits
    Conference (A-SSCC), Singapore, 2013, pp. 293-296.
    [31] B. Verbruggen, M. Iriguchi and J. Craninckx, "A 1.7 mW 11b 250 MS/s 2-Times Interleaved
    Fully Dynamic Pipelined SAR ADC in 40 nm Digital CMOS," in IEEE Journal of Solid-State
    Circuits, vol. 47, no. 12, pp. 2880-2887, Dec. 2012.
    [32] F. van der Goes et al., "A 1.5 mW 68 dB SNDR 80 Ms/s 2X Interleaved Pipelined SAR ADC
    in 28 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2835-2845, Dec.
    2014.
    [33] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita and U. Moon, "Ring amplifiers
    for switched-capacitor circuits," 2012 IEEE International Solid-State Circuits Conference, San
    Francisco, CA, 2012, pp. 460-462.
    [34] Y. Lim and M. P. Flynn, "A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC
    Using Self-Biased Ring Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 50, no. 10,
    pp. 2331-2341, Oct. 2015.
    [35] Y. Lim and M. P. Flynn, "26.1 A 1mW 71.5dB SNDR 50MS/S 13b fully differential ringamplifier-
    based SAR-assisted pipeline ADC," 2015 IEEE International Solid-State Circuits
    Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
    [36] C. Li, C. Chan, Y. Zhu and R. P. Martins, "Analysis of Reference Error in High-Speed SAR
    ADCs With Capacitive DAC," in IEEE Transactions on Circuits and Systems I: Regular Papers,
    vol. 66, no. 1, pp. 82-93, Jan. 2019.
    104
    [37] P. Harikumar and J. J. Wikner, "Design of a reference voltage buffer for a 10-bit 50 MS/s SAR
    ADC in 65 nm CMOS," 2015 IEEE International Symposium on Circuits and Systems (ISCAS),
    Lisbon, 2015, pp. 249-252.
    [38] C. Li, C. Chan, Y. Zhu and R. P. Martins, "Analysis of Reference Error in High-Speed SAR
    ADCs With Capacitive DAC," in IEEE Transactions on Circuits and Systems I: Regular Papers,
    vol. 66, no. 1, pp. 82-93, Jan. 2019.
    [39] Z. Cao, S. Yan and Y. Li, "A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13um CMOS," in
    IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 862-873, March 2009.
    [40] C. Lee, W. Kim, H. Kang and S. Ryu, "A Replica-Driving Technique for High Performance SC
    Circuits and Pipelined ADC Design," in IEEE Transactions on Circuits and Systems II: Express
    Briefs, vol. 60, no. 9, pp. 557-561, Sept. 2013.
    [41] L. Kull et al., "A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate
    comparators for enhanced speed in 32nm digital SOI CMOS," 2013 IEEE International Solid-
    State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 468-469.
    [42] R. Kapusta, J. Shen, S. Decker, H. Li and E. Ibaragi, "A 14b 80MS/s SAR ADC with 73.6dB
    SNDR in 65nm CMOS," 2013 IEEE International Solid-State Circuits Conference Digest of
    Technical Papers, San Francisco, CA, 2013, pp. 472-473.2
    [43] A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital
    converter," in IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999.
    [44] G. Huang and P. Lin, "A fast bootstrapped switch for high-speed high-resolution A/D
    converter," 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, 2010,
    pp. 382-385.
    [45] H. Chen, L. He, H. Deng, Y. Yin and F. Lin, "A high-performance bootstrap switch for low
    voltage switched-capacitor circuits," 2014 IEEE International Symposium on Radio-Frequency
    Integration Technology, Hefei, 2014, pp. 1-3.
    [46] Fiedler, Horst L., et al. "A 5-bit building block for 20 MHz A/D converters." IEEE Journal of
    Solid-State Circuits 16.3 (1981): 151-155.
    [47] Kobayashi, Tsuguo, et al. "A current-controlled latch sense amplifier and a static power-saving
    input buffer for low-power architecture." IEICE transactions on electronics 76.5 (1993): 863-
    867.
    [48] S. Babayan-Mashhadi and R. Lotfi, "Analysis and Design of a Low-Voltage Low-Power
    Double-Tail Comparator," in IEEE Transactions on Very Large Scale Integration (VLSI)
    Systems, vol. 22, no. 2, pp. 343-352, Feb. 2014.
    105
    [49] B. Wicht, T. Nirschl and D. Schmitt-Landsiedel, "Yield and speed optimization of a latch-type
    voltage sense amplifier," in IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158,
    July 2004.
    [50] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink and B. Nauta, "A
    10-bit Charge-Redistribution ADC Consuming 1.9uW at 1 MS/s," in IEEE Journal of Solid-
    State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010.
    [51] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, "A Double-Tail Latch-
    Type Voltage Sense Amplifier with 18ps Setup+Hold Time," 2007 IEEE International Solid-
    State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 314-605.
    [52] J. He, S. Zhan, D. Chen and R. L. Geiger, "Analyses of Static and Dynamic Random Offset
    Voltages in Dynamic Comparators," in IEEE Transactions on Circuits and Systems I: Regular
    Papers, vol. 56, no. 5, pp. 911-919, May 2009.
    [53] P. Nuzzo, F. De Bernardinis, P. Terreni and G. Van der Plas, "Noise Analysis of Regenerative
    Comparators for Reconfigurable ADC Architectures," in IEEE Transactions on Circuits and
    Systems I: Regular Papers, vol. 55, no. 6, pp. 1441-1454, July 2008.
    [54] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched
    comparators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7,
    pp. 541-545, July 2006.
    [55] Lei, Ka Meng & Mak, Pui-In & Martins, R.P.. (2013). Systematic analysis and cancellation of
    kickback noise in a dynamic latched comparator. Analog Integrated Circuits and Signal
    Processing. 77. 277-284.
    [56] A. Bekal, R. Joshi, M. Goswami, B. R. Singh and A. Srivatsava, "An Improved Dynamic Latch
    Based Comparator for 8-Bit Asynchronous SAR ADC," 2015 IEEE Computer Society Annual
    Symposium on VLSI, Montpellier, 2015, pp. 178-182.
    [57] S. Gambini and J. Rabaey, "Low-Power Successive Approximation Converter With 0.5 V
    Supply in 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2348-
    2356, Nov. 2007.
    [58] R. Xu, B. Liu and J. Yuan, "Digitally Calibrated 768-kS/s 10-b Minimum-Size SAR ADC Array
    With Dithering," in IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2129-2140, Sept.
    2012.

    QR CODE