研究生: |
陳 鴻 |
---|---|
論文名稱: |
綠色設計之三維產品拆卸計算方法 Computational Methods in 3D product Disassembly for Green Design |
指導教授: | 瞿志行 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 拆卸規劃 、再生率 、回收率 、粒子群演算法 、綠色設計 、先行關係 、八元樹 |
外文關鍵詞: | disassembly planning, recycling rate, precedence relationship, Octree, green design, PSO |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於綠色意識抬頭,各國開始制定產品環保限制指令,目前以歐盟施行之環保指令最為明確,輸入之產品必須達到規定的再生率與回收率,對於產品開發所帶來的衝擊甚大。研究指出拆卸分析為產品生命週期結束(Product End-of-Life)之關鍵,應及早於設計階段考量之,藉以縮短產品設計時間、減少產品拆卸成本與加強零組件模組化。於拆卸規劃上則可降低拆卸成本,減少人為判斷不足所造成的成本損失。本論文將針對¬產品拆卸問題進行深入探討,主要研究範圍包括「單一零件拆卸」、「產品先行關係決定」與「最佳化產品拆卸順序」。針對單一零件拆卸提出了創新性漸進式網路圖建構法,透過切平面與可移動空間切割決定網路圖的節點,再利用切平面之間的零件移動規劃產生拆卸路徑,不需建構出完整的網路圖,故能有效提升計算效率。為增加產品拆卸效率,亦探討兩零件同時拆卸之做法,並於過程中避免兩零件產生碰撞。產品先行關係議題上,有別於以往僅考量單一方向的先行關係產生方式,造成考量範疇過於狹窄,本研究透過八元樹逼近與最少障礙物搜尋法,計算每一零件之先行零件。最後根據先行關係計算結果結合粒子群演算法,考量回收率、再生率與拆卸成本決定最佳之產品拆卸順序。應用本研究所提出之創新方法論,搭配電腦輔助設計技術以及產品CAD模型,將可有效地進行產品拆卸分析、降低產品拆卸成本進而達到綠色產品永續設計之理念。
Most developed countries started to enforce environmental protection regulations due to the recent green consciousness. The European Unions (EU), among them, has passed two strict directives, WEEE and RoHS, which restrict the amount of hazardous substances in the product and the recycling/reuse rates in product end-of-life, respectively. These regulations significantly impact development of the products exported to the EU. Thus most international brands have to take special procedures in the product development for compliance with the green directives. Previous studies indicate that product disassembly sequence is a key factor in green product development. It must be taken into account at the design stage. This research investigates disassembly of 3D product with focuses on three topics: “disassembly planning of single part”, “calculation of the part precedence relationship”, and “optimization of disassembly planning”. First, a novel method is proposed to construct a progressive path planning network for part disassembly. The nodes in the network are determined by intersecting a series of cutting planes and the obstacle space. The disassembly path is then computed by incrementally moving the part within consecutive cutting planes. The calculation efficiency is improved without the need of the entire network construction. This work also presents an approach for concurrent disassembly of two parts without interference. In the part precedence relationship, the Octree technique is applied to characterize the spatial relationships among the parts comprising a product. Integrated with PSO (Particle Swarm Optimization) algorithms, the result allows optimization of the product disassembly sequence while considering the recycling rate, the reuse rate, and the disassembly costs. The proposed methods provide effective means for computer-aided green product design, which facilitates disassembly planning, reduces disassembly cost, and thus achieve sustainable product development.
1. William, C. R. and Vincent, A. C., “Managing Digital Libraries for Computer-aided Design”, Computer Aided Design, 32(30), pp. 119-132, 2000.
2. Lambert, A.J.D., “Disassembly Sequencing: a Survey,” International Journal of Production Research, 41(16), pp. 3721-3759, 2003.
3. Prenting, T. O. and Battaglin, R. M., “The Precedence Diagram: a Tool for Analysis in Assembly Line Balancing,” Journal of Industrial Engineering, 15(4), pp. 208–213, 1964.
4. Boothroyd, G., Poli, C. and Murch, L. E., “Automatic Assembly,” Manufacturing Engineering and Materials Processing, Vol.6, 1982.
5. Boothroyd, G. and Dewhurst, P., Design for Assembly Handbook, Amherst, MA: University of Massachusetts, 1983.
6. Yokota, K. and Brough, D. R., “Assembly/Disassembly Sequence Planning,” Assembly Automation, 12(3), pp. 31–38, 1992.
7. Huang, Y. F. and LEE, C. S. G., “Precedence Knowledge in Feature Mating Operation Assembly Planning,” IEEE International Conference on Robotics and Automation, pp. 216–221, 1989.
8. Wolter, J. D., “A Constraint-based Approach to Planning with Subassemblies,” IEEE International Conference on Systems Engineering, pp. 412–415, 1990.
9. Wolter, J. D., Chakrabarty, S. and Tsao, J., “Mating Constraint Languages for Assembly Sequence Planning,” IEEE International Conference on Robotics and Automation, pp. 2367–2374, 1992.
10. Rajan, V. N. and Nof, S. Y., “Minimal Precedence Constraints for Integrated Assembly and Execution Planning,” IEEE Transactions on Robotics and Automation, 12(2), 175–186, 1996.
11. Lambert, A. J. D., “Automatic Determination of Transition Matrices in Optimal Disassembly Sequence Generation,” IEEE International Symposium on Assembly and Task Planning, pp. 220–225, 2001.
12. Takeyama, H., Sekiguchi, H., Kojima, T., Inoue, K. and Honda, T., “Study on Automatic Determination of Assembly Sequence,” CIRP Annals, 32(1), pp. 371–374, 1983.
13. Hu, D., Hu, Y., and Li, C., “Mechanical product disassembly sequence and path planning based on knowledge and geometric reasoning,” International Journal of Advanced Manufacturing Technology, 19(9), pp. 688–696, 2002.
14. Varadhan, G., Krishnan, S., Sriram, T.V.N. and Manocha, D., “A Simple Algorithm for Complete Motion Planning of Translating Polyhedral Robots,” The International Journal of Robotics Research, 25(11), pp. 1049-1070, 2006.
15. Moore, K.E., Gungor, A. and Gupta, S.M., “Petri Net Approach to Disassembly Process Planning for Products with Complex AND/OR Precedence Relationships,” European Journal of Operation Research, 135(2), pp. 428-449, 2001.
16. Huang, Y.M., and Huang, C.T., “Disassembly Matrix for Disassembly Process of Products,” International Journal of Production Research, 40(2), pp. 255-273, 2002.
17. Bourjault, A., “Contribution a` une approche me’thodologique de l’assemblage automatise ’: elaboration automatique des se’ quences ope’ ratoires,” PhD Thesis, Besanc﹐on, France: Faculty of Science and Technology, Universite’ de Franche-Comte’ 12 November (in French), 1984.
18. De Fazio, T. L. and Whitney, D. E., “Simplified Generation of All Mechanical Assembly Sequences,” IEEE Journal of Robotics and Automation, RA–3 (6), pp. 640–658, 1987.
19. Gungor, A., Surendra, M. and Gupta, S.M., “Disassembly Sequence Plan Generation Using Branch-and-Bound Algorithm,” International Journal of Production Research, 39(3), pp. 481-509, 2001.
20. Seo, K.K., Park, J.H. and Jang, D.S., “Optimal Disassembly Sequence Using Genetic Algorithms Considering Economic and Environmental Aspects,” International Journal of Advanced Manufacturing Technology, 18(5), pp. 371-380, 2001.
21. McGovern, S.M. and Gupta, S.M., “Ant Colony Optimization for Disassembly Sequencing with Multiple Objectives,” International Journal of Advanced Manufacturing Technology, 30(5-6), pp. 481-496, 2006.
22. Wang, J.F., Liu, J.H. and Zhong, Y.F., “A Novel Ant Colony Algorithm for Assembly Sequence Planning,” International Journal of Advanced Manufacturing Technology, 25(11-12), pp. 1137-1143, 2005.
23. Sarin, S.C., Sherali, H.D. and Bhootra, A., “A Precedence-Constrained Asymmetric Traveling Salesman Model for Disassembly Optimization,” IIE Transactions, 38(3), pp. 223-237, 2006.
24. Huang, H. H., Wang, M. H. and Johnson, M. R., “Disassembly Sequence Generation Using a Neural Network Approach,” Journal of Manufacturing Systems, 19(2), 73–82, 2000.
25. Gerner, S., Kobeissi, A., David, B., Binder, Z. and Descotes-Genon, B., “Integrated Approach for Disassembly Processes Generation and Recycling Evaluation of an End-of-Life Product,” International Journal of Production Research, 43(1), pp. 195-222, 2005.
26. Lambert, A.J.D, “Exact Methods in Optimum Disassembly Sequence Search for Problems Subjects to Sequence Dependent Costs,” International Journal of Management Science, 34, pp. 538-549, 2006.
27. Kuo, T.C., “Disassembly Sequence and Cost Analysis for Electromechanical Products,” Robotics and Computer-Integrated Manufacturing, 16(1), pp. 43-54, 2000.
28. Oliver, J.H., Chou, S.Y., and Chen, L.L., “Parallel Disassembly by Onion Peeling,” ASME Journal of Mechanical Design, 119(2), pp. 267-274, 1997.
29. Dong, T.Y., Zhang, L., Tong, R.F. and Dong, J.X., “A Hierarchical Approach to Disassembly Sequence Planning for Mechanical Product,” International Journal of Advanced Manufacturing Technology, 30(5-6), pp. 507-520, 2006.
30. Mark de Berg, van Krefeld, M., Overmars, M, Schwarzkopf, O., Computational Geometry: Algorithms and Applications, Second Edition, Springer, Inc., New York, 2000.
31. http://www.qhull.org
32. Jamer, L. P. and Abraham, S., Operating System Concept, Wesley Publishing Company, 1986.
33. Kennedy, J. and Eberhart, R.C., “Neural Networks: Particle Swarm Optimization,” Proceedings of the IEEE International Conference, Vol. 27, pp. 1942–1948, 1995.
34. Kennedy, J., Eberhart, R.C. and Shi, Y., Swarm Intelligence, Morgan Kaufmann Publishes, New York, 2001.
35. Russell, S. and Norvig, P., Artificial Intelligence: a Modern Approach, Prentice Hall Series, USA, 2003.
36. Shi, Y. and Eberhart, R., “Evolutionary Computation: Empirical Study of Particle Swarm Optimization,” Processing of the Congress, pp. 1945-1950, 1999.
37. http://icdweb.cc.purdue.edu/~hux
38. 廖偉宏,「以直交粒子群最佳化演算法來解工作分配問題」,碩士論文,私立逢甲大學資訊工程學系,2004