簡易檢索 / 詳目顯示

研究生: 洪敏峰
Hung, Min-Feng
論文名稱: 可應用於三維積體電路之奈米結構電荷儲存式非揮發性記憶體
3D IC Applicable Nonvolatile Memories with Nanostructures
指導教授: 吳永俊
Wu, Yung-Chun
口試委員: 吳永俊
Wu, Yung-Chun
張廖貴術
Chang-Liao, Kuei-Shu
巫勇賢
Wu, Yung-Hsien
李敏鴻
Lee, Ming-Hung
林育賢
Lin, Yu-Hsien
胡心卉
Hu, Hsin-Hui
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 137
中文關鍵詞: 非揮發性記憶體三向閘極可應用於三維積體電路複晶矽多奈米線通道雙複晶矽非揮發性記憶體TANOS 非揮發性記憶體矽奈米點環繞式閘極穿隧電晶體
外文關鍵詞: Monvolatile memory (NVM), Trigate, 3D IC Applicable, Poly-Si nanowires, twin TFT NVM, TANOS NVM, Si-NCs, Gate-all-around (GAA), Tunneling Field-Effect Transistor (TFET)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共分成四部份,首先此論文第一部份為三向閘極複晶矽多奈米線通道雙電晶體非揮發性記憶體(twin-TFT NVM)元件。過去本團隊製作雙電晶體非揮發性記憶體,結構為兩晶體共用相同浮停閘極,用較大尺寸電晶體當閘極,利用電壓偶合控制較小尺寸之電晶體,浮停閘極可儲存電荷並改變電晶體臨界電壓(Vth)。然而由於穿隧氧化層與阻絕氧化層為同一層,因此兩者厚度相同,再加上使用複晶矽為儲存層,因此在此提出兩種改善方式。第一種改善方式是將雙電晶體非揮發性記憶體元件做電漿處裡,薄膜電晶體可使用短時間之電漿鈍化修補通道與氧化層之缺陷,多項研究指出其開關特性可大幅改善。實驗結果呈現電晶體開關特性(次臨界斜率、載子遷移率、開關電流比)之改善,此外經氨電漿鈍化之記憶體寫抹速度及可靠度皆改善,並有改善機制之探討;第二種改善方式,我們將單層二氧化矽(SiO2)閘極氧化層改成二氧化矽(SiO2)/氮化矽(Si3N4)(簡稱O/N結構)。由於氮化矽的介電係數比二氧化矽高,因此在穿隧區之二氧化矽電場被增強;此外,由於氮化矽具有離散缺陷儲存之能力,因此即使有漏電路徑產生,儲存之電荷不會完全流失。使用O/N結構有效提高寫抹速度及可靠度。 最後我們提出一種可低溫製程的雙複晶矽電晶體非揮發性記憶體以InGaZnOx (IGZO) 作為儲存層,IGZO層可以於室溫下沉積。我們操作出5V以上的記憶窗,並且有好的可靠度。元件尺寸對記憶窗大小之影響在此作深入討論。
    第二部份為應用金屬閘極(TaN)與高介電係數(Al2O3)之非揮發性記憶體元件,首先是具多條複晶矽奈米線通道TANOS非揮發性記憶體。氧化鋁具有比二氧化矽高的介電係數,且其對電子與電洞之能障高,很適合當作閘極氧化層;然而使用n型重摻雜之多晶矽閘極,在抹除時會造成不必要的閘極注入,導致臨界電壓變化之飽和;使用高功函數氮化鉭(TaN)閘極能有效抑制抹除時的閘極注入。在此我們結合TANOS及多條複晶矽奈米線通道。我們利用奈米線形成Pi型閘極結構,有效控制奈米線四個角落,因此有效利用尖端幫助寫抹,由實驗資料可知寫抹速度大幅提升。然而十年後電荷保存量剩原本之60%,因此還有改善的空間。我們引進矽奈米點(Si-NCs)來改善資料保久度,由於矽奈米點為離散程度高,介面有很多缺陷可提供儲存電荷,再加上矽奈米點可使儲存之電荷位於比氮化矽缺陷深的能態,因此矽奈米點更能防止漏電;此外矽奈米點為前段製程,對製程較無污染。由實驗數據可知,使用矽奈米點之TANOS非揮發性記憶體表現出極佳的可靠度。接著我們使用TANOS非揮發性記憶體作二位元操作,並且提供新的二位元操作模式。
    第三部份我們結合環繞式閘極結構(Gate-all-around, GAA)與矽奈米點(Si-NCs)之非揮發性記憶體。環繞式閘極將奈米線通道包住,具有最佳的通道控制能力。除了環繞式閘極結構導致寫抹速度更提升,奈米點也有提高記憶窗的效果。使用奈米點之記憶體元件表現好的可靠度。由於矽奈米點亦具有離散缺陷儲存特性,此短通道元件亦可使用二位元操作。
    第四部份我們結合多條複晶矽奈米線元件、SONOS結構、以及穿隧電晶體(TFET)。由於穿隧電晶體具有打破室溫下60 mV/dec.的限制,用於記憶體元件,有助於提高”0”與”1”狀態的判讀。穿隧電晶體元件為未來低靜態功率消耗之元件的解決方案之一。利用三向閘極結構能有助於穿隧電晶體的源極穿隧,有助於提高穿隧電流以及降低次臨界斜率。以此概念出發,我們SONOS結構之穿隧式非揮發性記憶體元件,具有大的記憶窗及優秀的可靠度。


    This thesis is divided into four parts to demonstrate 3D IC applicable nonvolatile memories with nanostructures. In the first part, we improves the performance and reliability of a trigate polycrystalline silicon (poly-Si) nanowires twin-TFT nonvolatile memory (NVM) by NH3 plasma passivation and O/N structure. Trigate structure significantly enhances the programming and erasing speed, but a FG NVM device can not endure cycling stress. NH3 plasma contains H and N radicals. H radicals can passivate the grain boundaries in poly-Si channel and the interface trap at Si/SiO2 interface; N radicals can be combined with Si dangling bonds at the interface to form the Si-N bands, which are stronger than Si-H bonds. After NH3 plasma passivation, the TFT performs high Ion/Ioff and steep SS; passivated twin-TFT NVM shows larger memory window and improved endurance and retention. Secondly, we use O/N structure is to replace a single SiO2 layer. Nitride film has discrete charge trapping property; only a portion of the stored charge leaks out as a stress-induced leakage path (SILP) is formed. O/N structure enhances the electric field in tunneling dielectric, so an O/N structure twin-TFT NVM shows faster programming and erasing speed than an O/structure twin-TFT NVM. Thanks to the discrete charge trapping property, an O/N structure twin-TFT NVM shows good reliability. At last, a twin-TFT NVM with InGaZnOx (IGZO) FG is demonstrated. This NVM device with a low fabrication temperature is feasible for display application. An IGZO FG NVM exhibits large memory window and good retention.
    In the second part, we study a pi-gate poly-Si NWs TANOS NVM. Pi-gate enhances the programming and erasing speed because corners induce higher electric field. Al2O3 has higher dielectric constant than SiO2, so TANOS can have higher αG than that of a SONOS NVM with the same blocking oxide thickness. Because TANOS NVM uses nitride CTL, it can be performed as 2 bits per cell. A kind of 2-bit operation based on F-N tunneling is demonstrated for a long channel TANOS NVM.
    In order to obtain high-k Al2O3, high temperature annealing is necessary. However, high temperature causes Al2O3 to be crystallized. The grain boundaries of the Al2O3 behave as leakage paths that the stored charge in nitride can leak to gate through those grain boundaries. Introducing nanocrystals (NCs) in NVM devices was reported to improve retention. We introduce Si-NCs in TANOS NVM for improving the retention.
    In the third part, we demonstrate a gate-all-around (GAA) structure SONOS NVM with Si-NCs charge trapping layer. GAA structure has the best gate control in multi-gate structure. GAA structure concentrates the electric field in tunneling oxide, and lessens that in blocking oxide. NCs reduce the charge loss and possess discrete charge trapping property. GAA NCs NVM shows fast programming and erasing speed, good reliability and can perform 2-bit operation.
    Finally, a trigate NWs TFET SONOS (T-SONOS) NVM is demonstrated. First, we introduce the trigate structure to improve the performance of a TFET. The Ion, Ion/Ioff and SS can be significantly improved by trigate. Furthermore, corners of trigate enhance the electric field for F-N tunneling. This proposed T-SONOS performs large memory window and good reliability.

    中文摘要 ……………………………………………………………………………i Abstract…………………………………………………………………………iii Acknowledgment…………………………………………………………………vi Content ……………………………………………………………………xviii Table Captions ………………………………………………………………xi Figure Captions ……………………………………………………………xii Chapter 1 Introduction ……………………………………………………1 1.1 Semiconductor memory …………………………………………………1 1.2 MOSFET-based NVM…………………………………………………………3 1.3 Multi-gate (MuG) structure ………………………………………4 1.4 Tunneling Field-Effect transistor (TFET) ……………………5 1.5 Poly-Si channel…………………………………………………………6 1.6 Motivation …………………………………………………………………7 1.7 Organization of the thesis…………………………………………9 Chapter 2 Device Mechanisms of the Nonvolatile memory……16 2.1 Programming and erasing mechanism………………………………16 2.2 memory device design guideline…………………………………19 2.3 Method of Device Parameter Extraction………………………………………………………………………20 2.4 Reliability ………………………………………………………………22 Chapter 3 Tri-gate Nanowires Twin Thin-Film Transistor Nonvolatile Memory …………………………………………………………29 3.1 NH3 plasma passivation………………………………………………30 3.2 Twin-TFT NVM with O/N structure…………………………………35 3.3 IGZO storage layer twin-TFT NVM…………………………………40 Chapter 4 TaN-Al2O3-Si3N4-SiO2-Si (TANOS) with nanostructure and its 2-bit operation………………………………64 4.1 Introduction………………………………………………………………64 4.2 Pi-gate Nanowires TANOS NVM………………………………………64 4.3 2-bit operations………………………………………………………67 4.4 TANOS NVM with Si-NCs………………………………………………71 4.5 Conclusion ………………………………………………………………74 Chapter 5 Gate-All-Around SONOS Nonvolatile Memory with Silicon Nanocrystal Charge Storage Nodes ………………………87 5.1 Introduction ………………………………………………………… 87 5.2 Experiment…………………………………………………………………88 5.3 Result and Discussion………………………………………………89 5.4 Conclusion ………………………………………………………………92 Chapter 6 Trigate Tunneling Field Effect Transistor (TFET) and its NVM device…………………………………………………………98 6.1 Introduction ……………………………………………………………98 6.2 Trigate poly-Si NWs channel TFET………………………………100 6.3 Trigate TFET based SONOS NVM (T-SONOS)……………………102 6.4 Conclusion………………………………………………………………103 Chapter 7 Conclusion.……………………………………………………112 Reference………………………………………………………………………115 簡歷………………………………………………………………………………135 Publication List……………………………………………………………136

    Chapter 1
    [1-1] K. Hahng, S. M. Sze,” A floating gate and its application to memory devices,” Trans. Electron Device, vol. 14, pp. 629, Sep. 1967.
    [1-2] J. D. Lee, S. H. Hur, and J. D. Choi," Effects of Floating-Gate Interference on NAND Flash Memory Cell Operation," IEEE Electron Device Letters, vol. 23, no. 5, pp. 264-266, May 2002.
    [1-3] C. Y. Lu, K. Y. Hsieh, R. Liu," Future challenges of flash memory technologies," Microelectronic Engineering, vol. 86, pp. 283–286, 2009.
    [1-4] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi," NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell," IEEE Electron Device Lett., vol. 21, no. 11, pp. 543-545, Nov. 2000.
    [1-5] M. Specht, R. Kömmling, F. Hofmann, V. Klandzievski, L. Dreeskornfeld, W. Weber, J. Kretz, E. Landgraf, T. Schulz, J. Hartwich, W. Rösner, M. Städele, R. J. Luyken, H. Reisinger, A. Graham, E. Hartmann, and L. Risch," Novel Dual Bit Tri-Gate Charge Trapping Memory Devices," IEEE Electron Device Lett., vol. 25, no. 12, pp. 810-812, DEC. 2004.
    [1-6] C. H. Lee, S. H. Hur, Y. C. Shin, J. H. Choi, D. G. Park, and K. Kim," Charge-trapping device structure of SiO2 /SiN/high-k dielectric Al2O3 for high-density flash memory," Appl. Phys. Lett., vol. 86, pp. 152908, April 2005.
    [1-7] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien," A Novel Nanowire Channel Poly-Si TFT Functionin as Transistor and Nonvolatile SONOS Memory," IEEE Electron Device Lett., vol. 28, no. 9, pp.809-811, Sep. 2007.
    [1-8] S. M. YANG, C. H. CHIEN, J. J. HUANG, and T. F. LEI." Nonvolatile Flash Memory Devices Using CeO2 Nanocrystal Trapping Layer for Two-Bit per Cell Applications," Jpn. J. Appl. Phys., Vol. 46, No. 6A, pp. 3291–3295, June 2007.
    [1-9] T. Y. Chiang, Y. H. Wu, W. C. Y. Ma, P. Y. Kuo, K. T. Wang, C. C. Liao, C. R. Yeh, W. L. Yang, and T. S. Chao," Characteristics of SONOS-Type Flash Memory With In Situ Embedded Silicon Nanocrystals," IEEE Trans Electron Devices, vol. 57, no. 8, pp.1895-1902 Aug 2010.
    [1-10] G. Gay, D. Belhachemi, J. P. Colonna, S. Minoret, P. Brianceau, D. Lafond, T. Baron, G. Molas, E. Jalaguier, A. Beaurain, B. Pelissier, V. Vidal, and B. De Salvo," Passivated TiN nanocrystals/SiN trapping layer for enhanced erasing in nonvolatile memory," Appl. Phys. Lett., vol. 97, pp. 152112, Oct. 2010.
    [1-11] www.intel.com/technology/architecture-silicon/22nm/
    [1-12] N. Singh, K. D. Buddharaju, S. K. Manhas, A. Agarwal, S. C. Rustagi, G. Q. Lo, N. Balasubramanian, and D. L. Kwong," Si, SiGe Nanowire Devices by Top–Down Technology and Their Applications," IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3107-3118, Nov 2008.
    [1-13] C. Hu, Modern Semiconductor Devices for Integrated Circuit,” (Prentice Hall, New Jersey, 2008), pp. 299-300.
    [1-14] M. Bohr," The Evolution of Scaling from the Homogeneous Era to the Heterogeneous Era," in IEDM Tech. Dig., 2011, pp. 1-6.
    [1-15] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, J. Y. Chin, P. H. Yeh, L. W. Feng, S. M. Sze, C. Y. Chang, and C. H. Lien,” Nonvolatile Si/SiO2 /SiN/SiO2 /Si type polycrystalline silicon thin-film-transistor memory with nanowire channels for improvement of erasing characteristics," Appl. Phys. Lett., vol. 91, pp. 193103, Nov. 2007.
    [1-16] J. Fu, N. Singh, K. D. Buddharaju, S. H. G. Teo, C. Shen, Y. Jiang, C. X. Zhu, M. B. Yu, G. Q. Lo, N. Balasubramanian, D. L. Kwong, E. Gnani, and G. Baccarani," Si-Nanowire Based Gate-All-Around Nonvolatile SONOS Memory Cell," IEEE Electron Device Lett., vol. 29, no. 5, pp. 518-521, May 2008.
    [1-17] Int. Technology. Roadmap for Semiconductors (ITRS), 2011, (http://www.itrs.net/Links/2011ITRS/Home2011.htm)
    [1-18] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee,” Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (< 50 mV/decade) at Room Temperature,” IEEE Electron Device Letters, vol. 32, no. 4, pp. 437-439, April 2011.
    [1-19] F. Mayer, C. Le Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus," F. Mayer, C. Le Royer, J.-F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus," in IEDM Tech. Dig., 2008, pp. 163-166.
    [1-20] W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu," Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec", IEEE Electron Device Lett., vol. 28, no. 8, pp. 743 - 745, Aug. 2007.
    [1-21] T. Krishnamohan, D. Kim, S. Raghunathan, K. Saraswat," Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With Record High Drive Currents and << 60mV/dec Subthreshold Slope," in IEDM Tech. Dig., 2008, pp. 947-950.
    [1-22] J. Appenzeller, J. Knoch, M. T. Björk, H. Riel, H. Schmid, and W. Riess," Toward Nanowire Electronics," IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 2827 - 2845, Nov. 2008.
    [1-23] S. H. Kim, H. Kam, C. Hu and T. J. K. Liu," Germanium-Source Tunnel Field Effect Transistors with Record High ION/IOFF," Symp. VLSI Tec. Dig., 2009, pp. 178 - 179.
    [1-24] W. Y. Loh, K. Jeon, C. Y. Kang, J. Oh, P. Patel, C. Smith, J. Barnett, C. Park, T. J. K. Liu, H. H. Tseng, P. Majhi, R. Jammy and C. Hu," Sub-60nm Si Tunnel Field Effect Transistors with Ion >100 μA/μm," in Proc. ESSDERC, 2010, pp. 162 - 165.
    [1-25] K. Jeon, W. Y. Loh, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H. H. Tseng, R. Jammy, T. J. King Liu, and C. Hu," Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing," VLSI Tec. Dig., 2010, pp. 121 - 122.
    [1-26] A. S. Verhulst, B. Sorée, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken," Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor", J. Appl. Phys., vol. 107, pp. 024518-1 - 024518-8, Jan. 2010.
    [1-27] R. Ishihara , J. Derakhshandeh, M.R. Tajari Mofrad, T. Chen, N. Golshani, C.I.M. Beenakker," Monolithic 3D-ICs with single grain Si thin film transistors," Solid-State Electronics, vol. 71, pp. 80 - 87, Feb. 2012.
    [1-28] E. K. Lai, H. T. Lue, Y. H. Hsiao, J. Y. Hsieh, C. Pin Lu, S. Y. Wang, L. W. Yang, T. Yang, K. C. Chen, J. Gong, K. Y. Hsieh, R. Liu, and C. Y. Lu," A Multi-Layer Stackable Thin-Film Transistor (TFT) NAND-Type Flash Memory," in IEDM Tech. Dig., 2006, pp. 507-510.
    [1-29] H. Tanaka, M. Kido, K. Yahashi, M.Oomura, R. Katsumata, M. Kito, Y. Fukuzumi, M.Sato, Y.Nagata, Y. Matsuoka, Y. Iwata, H. Aochi and A. Nitayama," Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory," in VLSI Tech. Dig., 2007, pp. 14-15.
    [1-30] H. C. Cheng, F. S. Wang, and C. Y. Huang,” Effects of NH3 Plasma Passivation on N-Channel Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 44, no. 1, pp. 64-68, Jan 1997.
    [1-31] M. J. Tsai, F. S. Wang, K. L. Cheng, S. Y. Wang, M. S. Feng, H. C. Cheng ," Characterization of H2/N2 plasma passivation process for poly-Si thin film transistors (TFTs)," Solid-State electronics, vol. 38, pp. 1233-1238, June 1995.
    [1-32] S. D. S. Malhi, H. Shichijo, S.K. Banerjee, R. Sundaresan, M. Elahy, G. P. Pollack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, H.W. Lam," Characteristics and Three-Dimensional Integration of MOSFET's in Small-Grain LPCVD Polycrystalline Silicon," IEEE Trans. Electron Devices, vol. ED-32, no. 2, pp. 258-281, Feb. 1985.
    [1-33] H. N. Chern, C. L. Lee, T. F. Lei," The Effects of Fluorine Passivation on Polvsilicon Thin-Film Transistors," IEEE Trans. Electron Devices, vol. 41, no. 5, pp. 698-702, May 1994.
    [1-34] Y. C. Wu, T. C. Chang, C. W. Chou, Y. C. Wu, P. T. Liu, C. H. Tu, W. J. Huang, J. C. Lou, and C. Y. Chang, ," Effects of Channel Width and NH3 Plasma Passivation on Electrical Characteristics of Polysilicon Thin-Film Transistors by Pattern-Dependent Metal-Induced Lateral Crystallization," J. Electrochem. Soc., 152, pp. G545-G549, June 2005.
    Chapter 2
    [2-1] S. M. Sze, Kwok K. Ng,” Physics of semiconductor devices,” 3rd edition, Wiley-Interscience, p. 438.
    [2-2] S. M. Sze, Kwok K. Ng,” Physics of semiconductor devices,” 3rd edition, Wiley-Interscience, p. 438.
    [2-3] Frank R. Libsch, Marvin H. White," Charge transport and storage of low programming voltage SONOS/MONOS memory devices," Solid-State Electronics," vol. 33, pp. 105-126, Jan 1990.
    [2-4] S. Tam, P. K. Ko. C. Hu," Lucky-Electron Model of Channel Hot-Electron Injection in MOSFETs," IEEE Trans. Electron Devices, vol. ED-31, no. 9, pp. 1116-1125, Sep. 1984.
    [2-5] S. Tam, P. K. Ko, C. Hu, and R. Muller, “Correlation between substrate and gate currents in MOSFET’s,” IEEE Trans. Electron Devices, vol. ED-29, no. 11, pp. 1740–1744, 1982.
    [2-6] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi," NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell," IEEE Electron Device Lett., vol. 21, no. 11, pp. 543-545, Nov. 2000.
    [2-7] Y. H. Lin, C. H. Chien, C. T. Lin, C. Y. Chang, and T. F. Lei," Novel Two-Bit HfO2 Nanocrystal Nonvolatile Flash Memory," IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 782-789, April 2006.
    [2-8] Y. C. Wu, M. F. Hung, C. W. Chang, and P. W. Su," Two-bit effect of trigate nanowires polycrystalline silicon thin-filmtransistor nonvolatile memory with oxide/nitride/oxide gate dielectrics," Appl. Phys. Lett., vol. 92, pp. 163506, April 2008.
    [2-9] P. Cappelletti, C. Golla, P. Olive, E. Zanoni, “FLASH MEMORY”, KAP, 1999, pp. 170-171.
    [2-10] P. Cappelletti, C. Golla, P. Olive, E. Zanoni, “FLASH MEMORY”, KAP, 1999, pp. 4-5.
    [2-11] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim," A Novel SONOS Structure of Si02/SiN/A1203 with TaN metal gate for multi-giga bit flash memeries," in IEDM Tech Dig., 2003, pp. 613-616.
    [2-12] J. D. Choi, J. H. Lee, W. H. Lee, K. S. Shin, Y. S. Yim, J. D. Lee, Y. C. Shin, S. N. Chang, K. C. Park, J. W. Park and C. G. Hwang," A 0.15 pm NAND Flash Technology with 0.11 pm2 Cell Size for 1 Gbit Flash Memory," in IEDM Tech. Dig., 2000, pp. 767-770.
    [2-13] J. D. Lee, S. H. Hur, and J. D. Choi," Effects of Floating-Gate Interference on NAND Flash Memory Cell Operation," IEEE Electron Device Letters, vol. 23, no. 5, May 2002.
    [2-14] M. Cao, T. Zhao, K. C. Saraswat, and J. D. Plummer," A Simple EEPROM Cell Using Twin Polysilicon Thin Film Transistors," IEEE Electron. Device. Lett., vol. 15, no. 8, pp. 304-306, Aug 1994.
    [2-15] C. Hu,” Modern Semiconductor Devices for Integrated Circuits,” Pearson, New Jersey, 2010, pp. 298-300.
    [2-16] D. K. Schroder,” Semiconductor Material and Device Characterization,” 3rd ed., Wiley, 2006, p. 223.
    [2-17] D. K. Schroder,” Semiconductor Material and Device Characterization,” 3rd ed., Wiley, 2006, p. 228.
    [2-18] D. K. Schroder,” Semiconductor Material and Device Characterization,” 3rd ed., Wiley, 2006, pp. 225-226.
    [2-19] Y. Taur, T. H. Ning,” Fundamentals of Modern VLSI Devices” Cambridge University Press, 1998, p. 128.
    [2-20] D. K. Schroder,” Semiconductor Material and Device Characterization,” 3rd ed., Wiley, 2006, pp. 500-501.
    Chapter 3
    [3-1] Mino Cao, Tiemin Zhao, Krishna C. Saraswat, and James D. Plummer,” A simple EEPROM cell using twin polysilicon thin film transistors” Electron Device Lett., vol. 15, 304-306, Aug. 1994.
    [3-2] Y. C. Wu, T. C. Chang, C. Y. Chang, C. S. Chen, C. H. Tu, P. T. Liu, H. W. Zan, Y. H. Tai,” High-performance polycrystalline silicon thin-film transistor with multiple nanowire channels and lightly doped drain structure,” Appl. Phys. Lett., vol. 84, 3822-3824, May 2004.
    [3-3] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien,” A Novel Nanowire Channel Poly-Si TFT Functioning as Transistor and Nonvolatile SONOS Memory,” IEEE Electron Device Lett., vol. 28, pp. 809-811, Sept. 2007.
    [3-4] J. Fu, Y. Jiang, N. Singh, C. X. Zhu, G. Q. Lo, and D. L. Kwong,” Polycrystalline Si Nanowire SONOS Nonvolatile Memory Cell Fabricated on a Gate-All-Around (GAA) Channel Architecture,” IEEE Electron Device Lett., vol. 30, pp. 246-249, March 2009.
    [3-5] B. D. Salvo, C. Gerardi, R. V. Schaijk, S. A. Lombardo, D. Corso, C. Plantamura, S. Serafino, G. Ammendola, M. V. Duuren, P. Goarin, W. Y. Mei, K. V. D. Jeugd, T. Baron, M. Gély, P. Mur, and S. Deleonibus," Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps (Silicon Nanocrystals, SONOS)," IEEE Trans Device Materials Rekliability, vol. 4, pp. 377-389, Sep. 2004.
    [3-6] Y. C. Wu, P. W. Su, C. W. Chang, and M. F. Hung,” Novel Twin Poly-Si Thin-Film Transistors EEPROM With Trigate Nanowire Structure”, IEEE Electron Device Lett., vol. 29, pp. 1226-1228, Nov. 2008.
    [3-7] H. C. Cheng, F. S. Wang, and C. Y. Huang,” Effects of NH3 plasma passivation on N-channel polycrystalline silicon thin-film transistors,” Trans. Electron Device, vol. 44, pp. 64-68, Jan. 1997.
    [3-8] M. J. Tsai, F. S. Wang, K. L. Cheng, S. Y. Wang, M. S. Feng, H. C. Cheng,” Characterization of plasma passivation process for poly-Si thin film transistors (TFTs),” Solid state electron, Vol. 38, pp. 1233-1238, 1995.
    [3-9] S. D. S. Malhi, H. Shichijo, S.K. Banerjee, R. Sundaresan, M. Elahy, G. P. Pollack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, H.W. Lam,” Characteristics and three-dimensional integration of MOSFET's in small-grain LPCVD polycrystalline Silicon,” Trans. Electron Device, vol. 32, pp. 258-28, Feb. 1985.
    [3-10] H. N. Chern, C. L. Lee, T. F. Lei,” The effects of fluorine passivation on polysilicon thin-film transistors,” Trans. Electron Device, vol. 41, pp. 698-702, May 1994.
    [3-11] Y. C. Wu, T. C. Chang, C. W. Chou, Y. C. Wu, P. T. Liu, C. H. Tu, W. J. Huang, J. C. Lou, and C. Y. Chang,” Effects of Channel Width and NH3 Plasma Passivation on Electrical Characteristics of Polysilicon Thin-Film Transistors by Pattern-Dependent Metal-Induced Lateral Crystallization,” J. Electrochem. Soc., vol. 152, pp. G545, 2005.
    [3-12] S. Tam, P. K. Ko, C. Hu, Trans. Electron Device,” Lucky-electron model of channel hot-electron injection in MOSFET's,” ED-31, pp. 1116-1125, Sep.1984.
    [3-13] N. I. Lee, J. W. Lee, H. S. Kim, and C. H. Han,” High-performance EEPROMs using N- and P-channel polysilicon thin-film transistors with electron cyclotron resonance N2O-plasma oxide,” IEEE Electron Device Lett., vol. 20, pp. 15-17, Jan. 1999.
    [3-14] P. T. Liu, C. S. Huang, and C. W. Chen,” Enhanced planar poly-Si TFT EEPROM cell for system on panel applications,” Solid- state Lett., vol. 10, pp. J89-J91, Aug. 2007.
    [3-15] J. H. Oh, H. J. Chung, N. I. Lee, and C. H. Han,” A high-endurance low-temperature polysilicon thin-film transistor EEPROM cell,” IEEE Electron Device Lett., vol. 21, pp. 304-306, June 2000.
    [3-16]. H. Yin, W. Xianyu, A. Tikhonovsky, and Y. S. Park,” Scalable 3-D Fin-Like Poly-Si TFT and Its Nonvolatile Memory Application,” IEEE Trans. Electron Devices, vol. 55, pp. 578-584, Feb. 2008.
    [3-17] C. T. Angelis, C. A. Dimitriadis, I. Samaras, J. Brini, G. Kamarinos, V. K. Gueorguiev, and Tz. E. Ivanov,” Study of leakage current in n-channel and p-channel polycrystalline silicon thin-film transistors by conduction and low frequency noise measurements,” J. Appl. Phys., vol. 82, pp. 4095-4101, July 1997.
    [3-18] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono,” Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488, Nov. 2004.
    [3-19] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumomi,” High-mobility thin-film transistor with amorphous InGaZnO channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, pp. 112123, Sep. 2006.
    [3-20] H. Q. Chiang, B. R. McFarlane, D. Hong, R. E. Presley, J. F. Wager,” Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors,” J. Non-Cyrst. Solids, 354, 2826, May 2008.
    [3-21] B. D. Ahn, H. S. Shin, G. H. Kim, J. S. Park, and H. J. Kim,” A Novel Amorphous InGaZnO Thin Film Transistor Structure without Source/Drain Layer Deposition,” Jpn. J. Appl. Phys., vol. 48, pp. 03B019, March 2009.
    [3-22] J. Park, I. Song, S. Kim, S. Kim, C. Kim, J. Lee, H. Lee, E. Lee, H. Yin, K. K. Kim, K. W. Kwon, and Y. Park,” Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 93, pp. 053501, Aug. 2008.
    [3-23] H. Yin, S. Kim, H. Lim, Y. Min, C. J. Kim, I. Song, J. Park, S. W. Kim, A. Tikhonovsky, J. Hyun, and Y. Park, Program/Erase Characteristics of Amorphous Gallium Indium Zinc Oxide Nonvolatile Memory,” Trans Electron devices, vol. 55, pp. 2071, Aug. 2008.
    [3-24] A. Suresh, S. Novak, P. Wellenius, V. Misra, and J. F. Muth,” Transparent indium gallium zinc oxide transistor based floating gate memory with platinum nanoparticles in the gate dielectric,” Appl. Phys. Lett., vol. 94, pp. 123501, March 2009.
    [3-25] L. C. Chen, Y. C. Wu, T. C. Lin, J. Y. Huang, M. F. Hung, J. H. Chen, and C. Y. Chang,” Poly-Si Nanowire Nonvolatile Memory With Nanocrystal Indium–Gallium–Zinc–Oxide Charge-Trapping Layer,” IEEE Electron Device Lett., vol. 31, pp. 1407-1409, Dec. 2010.
    Chapter 4
    [4-1] K. Prall,” Scaling non-volatile memory below 30nm,” in Proc. 22nd IEEE Non-Volatile Semicond. Memory Workshop, 2007, pp. 5-10.
    [4-2] N. Chan, M. F. Beug, R. Knoefler, T. Mueller, T. Melde, M. Ackermann,S. Riedel, M. Specht, C. Ludwig, and A. T. Tilke,” Metal control gate for sub-30nm floating gate NAND memory,” in Proc. 9th NVMTS, 2008, pp. 11-14.
    [4-3] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim,” A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories,” in IEDM Tech. Dig., 2003, pp. 613-616.
    [4-4] Y. Shin, J. Choi, C. Kang, C. Lee, K. T. Park, J. S. Lee, J. Sel, V. Kim, B. Choi, J. Sim, D. Kim, H. J. Cho and K. Kim,” A Novel NAND-type MONOS Memory using 63nm Process Technology for Multi-Gigabit Flash EEPROMs,” in IEDM Tech. Dig., 2005, pp. 327-330.
    [4-5] J. S. Lee, C. S. Kang, Y. C. Shin, C. H. Lee, K. T. Park, J. S. Sel, V. Kim, B. I. Choe, J. S. Sim, J. Choi and K. Kim,” Data retention characteristics of nitride-based charge trap memory devices with high-k dielectrics and high-work-function metal gates for multi-gigabit flash memory,” Jpn. J Appl. Phys., vol. 45, pp. 3213-3216, 2006.
    [4-6] C. S. Kang, H. J. Cho, Y. H. Kim, R. Choi, K. Onishi, A. Shahriar, and J. C. Lee, J. Vac. Sci. Technol.”, Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, pp. 2026-2028, 2003.
    [4-7] S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, J. W. Bartha, “ Crystallization behavior of thin ALD-Al2O3 films,” Thin Solid Film, vol. 425, pp. 216-220, Feb. 2003.
    [4-8] M. F. Beug, T. Melde, M. Czernohorsky, R. Hoffmann, J. Paul, R. Knoefler, and A. T. Tilke,” Analysis of TANOS memory cells with sealing oxide containing blocking dielectric,” IEEE Trans. Electron Devices, vol. 57,. pp. 1590-1596, 2010.
    [4-9] S. Tam, P. K. Ko, C. Hu,” Lucky-electron model of channel hot-electron injection in MOSFET'S,” IEEE Trans. Electron Device, vol. 31, pp. 1116-1125, 1984.
    [4-10] Y. C. Wu, T. C. Chang, C. Y. Chang, C. S. Chen, C. H. Tu, P. T. Liu, H. W. Zen, Y. H. Tai," High-performance polycrystalline silicon thin-film transistor with multiple nanowire channels and lightly doped drain structure,” Appl. Phys. Lett., vol. 84, pp. 3822-2824, 2004.
    [4-11] ISE TCAD Manual Release 10.0, Integrated Systems Engineering (ISE), AG Zurich, 2004.
    [4-12] S. M. Sze, Kwok K. Ng, Physics of semiconductor devices, 3rd edition, Wiley, New York, 2007, pp.437.
    [4-13] P. Cappelletti, C. Golla, P. Olivo, E. Zanoni, “Flash Memory,” Kluwer Academic Publishers, Norwell, 1999 , pp. 167.
    [4-14] A. Furnemont, M. Rosmeulen, J. Van Houdt, H. Maes, and K. De Meyer, “Cycling behavior of nitride charge profile in NROM type memory cells,” in Proc. IEEE Non-Volatile Semicond. Memory Workshop, 2006, pp. 66-67.
    [4-15] X. W. Wang, S. I. Shim, T. P. Ma, “Al2O3 as the Interpoly of Blocking Dielectric In Flash Memories,” in Proc. of the 38th Semiconductor Interface Specialists Conference, 2007, pp. 15.
    [4-16] G. Van den bosch, A. Furnemont, M. B. Zahid, R. Degraeve, L. Breuil, A. Cacciato, A. Rothschild, C. Olsen, U. Ganguly, J. Van Houdt, “Nitride engineering for improved erase performance and retention of TANOS NAND Flash memory,” in Proc. IEEE Non-Volatile Semicond. Memory Workshop, 2008, pp. 128-129.
    [4-17] A. Rothschild, L. Breuil , G. Van den bosch, O. Richard, T. Conard, A. Franquet, A. Cacciato, 1. Debusschere, M. Jurczak, J. Van Houdt, J. A. Kittl, U. Ganguly, L. Date, P. Boelen, R. Schreutelkamp,” O2 post deposition anneal of Al2O3 blocking dielectric for higher performance and reliability of TANOS Flash memory,” in Proc. IEEE Solid State Device Research Conference, 2009, pp. 272-275.
    [4-18] L. Breuil, A. Furnemont, A. Rothschild, G. Van den bosch, A. Cacciato, and J. Van Houdt, “Improvement of TANOS NAND Flash performance by the optimization of a sealing layer,” in Proc. IEEE Non-Volatile Semicond. Memory Workshop, 2008, pp. 126-127.
    [4-19] D. C. Gilmer, N. Goel, H. Park, C. Park, S. Verma, G. Bersuker, P. Lysaght, H. H. Tseng, P. D. Kirsch, K. C. Saraswat and R. Jammy, “Engineering the Complete MANOS-type NVM Stack for Best in Class Retention Performance,” in IEDM Tech. Dig., 2009, pp. 439-442.
    [4-20] S. I. Chang, C. H. Lee, C. Kang, S. Jeon, J. Kim, B. I. Choi, Y. Park, J. Park, W. Jeong, J. You, B. Choi, J. Sel, J. S. Sim, Y. Shin, J. Choi, and W. S. Lee,“Reliability Characteristics of TANOS (TaN/AlO/SiN/Oxide/Si) NAND Flash Memory with Rounded Corner (RC) Structure,” in Proc. IEEE Non-Volatile Semiconductor Memory Workshop, 2008, pp. 117-118.
    [4-21] M. C. Liu, T. Y. Chiang, P. Y. Kuo, M. H. Chou, Y. H. Wu, H. C. You, C. H. Cheng, S. H. Liu, W. L. Yang, T. F. Lei and T. S. Chao,” SONOS memories with embedded silicon nanocrystals in nitride,” Semicond. Sci. Technol., vol. 23, pp. 075033, May 2008.
    [4-22] N. M. Park, S. H. Kim, G. Y. Sung, S. J. Park," Growth and Size Control of Amorphous Silicon Quantum Dots Using SiH4/N2 Plasma," Chem. Vapor Depo., vol. 8, Issue 6, pp. 254 - 256, Dec. 2002.
    [4-23] L. Zhang, K. Chen, L. Wang, W. Li, J. Xu, X. Huang and K. Chen," The dependence of the interface and shape on the constrained growth of nc-Si in a-SiNx/a-Si:H/a-SiNx structures," J. Phys.: Condens. Matter, vol. 14, pp. 10083 - 10091, Oct. 2002.
    [4-24] J. D. Choe, S. H. Lee, J. J. Lee, E. S. Cho, Y Ann, B. Y. Choi, S. K. Sung, J. No, I. Chung, K. Park, D. Park,” Fin-Type Field-Effect Transistor NAND Flash with Nitride/Silicon Nanocrystal/Nitride Hybrid Trap Layer,” Jpn. J Appl. Phys., vol. 46, pp. 2197-2199, April 2007.
    [4-25] M. She, T. J. King, ”Impact of Crystal Size and Tunnel Dielectric on Semiconductor Nanocrystal Memory Performance,” IEEE Trans. Electron Devices, vol. 50, pp. 1934-1940, Sep. 2003.
    [4-26] G. Gay, D. Belhachemi, J. P. Colonna, S. Minoret, P. Brianceau, D. Lafond, T. Baron, G. Molas, E. Jalaguier, A. Beaurain, B. Pelissier, V. Vidal, and B. De Salvo," Passivated TiN nanocrystals/SiN trapping layer for enhanced erasing in nonvolatile memory," Appl. Phys. Lett., vol. 97, pp. 152112, Oct. 2010.
    Chapter 5
    [5-1] P. Xuan, M. She, B. Harteneck, A. Liddle, J. Bokor, and T. J. King,” FinFET SONOS flash memory for embedded applications,” - Int. Electron Devices Meet. 2003, pp. 609-612.
    [5-2] Y. C. Wu, M. F. Hung, C. W. Chang, and P. W. Su,” Two-bit effect of trigate nanowires polycrystalline silicon thin-film-transistor nonvolatile memory with oxide/nitride/oxide gate dielectrics,” Appl. Phys. Lett., vol. 92, pp. 163506, 2008.
    [5-3] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, C. C. Ko, S. Yang., L. W. Feng, S. M. Sze, C. Y. Chang, and C. H. Lien,” Pi-shape gate polycrystalline silicon thin-film transistor for nonvolatile memory applications,” Appl. Phys. Lett., vol. 91, pp. 213101, 2007.
    [5-4] C. Li, M. Bescond, and M. Lannoo,” Influence of the interface-induced electron self-energy on the subthreshold characteristics of silicon gate-all-around nanowire transistors,” Appl. Phys. Lett., vol. 97, pp. 252109, 2010.
    [5-5] K. H. Yeo, K. H. Cho, M. Li, S. D. Suk, Y. Y. Yeoh, M. S. Kim, H. Bae, J. M. Lee, S. K. Sung, J. Seo, B. Park, D. W. Kim, D. Park, and W. S. Lee," Gate-all-around Single Silicon Nanowire MOSFET with 7 nm width for SONOS NAND Flash Memory," Symp. VLSI Tech. Dig., 2008, pp.138-139.
    [5-6] S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi,” Single charge and confinement effects in nano‐crystal memories,” Appl. Phys. Lett., vol. 69, pp. 1232-1234, 1996.
    [5-7] B. Li and J. Liu,” CoSi2-coated Si nanocrystal memory,” J. Appl. Phys., vol. 105, pp. 084905, 2009.
    [5-8] T. H. Ng, W. K. Chim, and W. K. Choi,” Conductance-voltage measurements on germanium nanocrystal memory structures and effect of gate electric field coupling,” Appl. Phys. Lett., vol. 88, pp. 113112, 2006.
    [5-9] G. Gay, D. Belhachemi, J. P. Colonna, S. Minoret, P. Brianceau, D. Lafond, T. Baron, G. Molas, E. Jalaguier, A. Beaurain, B. Pelissier, V. Vidal, and B. De Salvo,” Passivated TiN nanocrystals/SiN trapping layer for enhanced erasing in nonvolatile memory,” Appl. Phys. Lett., vol. 97, pp. 152112, 2010.
    [5-10] J. H. Chen, W. J. Yoo, D. S. H. Chan, and L. J. Tang,” Self-assembly of Al2O3 nanodots on SiO2 using two-step controlled annealing technique for long retention nonvolatile memories,” Appl. Phys. Lett., vol. 86, pp. 073114, 2005.
    [5-11] J. Fu, K. D. Buddharaju, S. H. G. Teo, C. Shen, Y. Jiang, C. X. Zhu, M. B. Yu, G. Q. Lo, N. Balasubramanian, D. L. Kwong, E. Gnani, and G. Baccarani,” Si-Nanowire Based Gate-All-Around Nonvolatile SONOS Memory Cell,” IEEE Electron Device Lett., vol. 29, pp. 518-521, 2008.
    [5-12] T. Kamigaichi, F. Arai, H. Nitsuta, M. Endo, K. Nishihara, T. Murata, H. Takekida, T. Izumi, K. Uchida, T. Maruyama, I. Kawabata, Y. Suyama, A. Sato, K. Ueno, H. Takeshita, Y. Joko, S. Watanabe, Y. Liu, H. Meguro, A. Kajita, Y. Ozawa, and T. Watanabe,” Floating Gate super multi level NAND Flash Memory Technology for 30nm and beyond,” Tech. Dig. - Int. Electron Devices Meet., 2008, pp. 827-830.
    [5-13] S. M. Jung, J. Jang, W. Cho, H. Cho, J. Jeong, Y. Chang, J. K. Y. Rah, Y. Son, J. Park, M. S. Song, K. H. Kim, J. S. Lim and K. Kim,” Three Dimensionally Stacked NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS Structure for Beyond 30nm Node,” Tech. Dig. - Int. Electron Devices Meet., 2006, pp. 503-506.
    [5-14] J. D. Choe, S. H. Lee, J. J. Lee, E. S. Cho, Y Ann, B. Y. Choi, S. K. Sung, J. No, I. Chung, K. Park, D. Park,” Fin-Type Field-Effect Transistor NAND Flash with Nitride/Silicon Nanocrystal/Nitride Hybrid Trap Layer,” Jpn. J Appl. Phys. 46, 2197 (2007)
    [5-15] M. She, T. J. King, IEEE Trans. Electron devices 50, 1934 (2003)
    [5-16] Y. C. Wu, T. C. Chang, C. Y. Chang, C. S. Chen, C. H. Tu, P. T. Liu, H. W. Zan, Y. H. Tai," High-performance polycrystalline silicon thin-film transistor with multiple nanowire channels and lightly doped drain structure," Appl. Phys. Lett., vol. 84, pp. 3822-3824, May 2004.
    Chapter 6
    [6-1] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee,” Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (< 50 mV/decade) at Room Temperature,” IEEE Electron Device Letters, vol. 32, no. 4, pp. 437-439, April 2011.
    [6-2] K. Jeon, W. Y. Loh, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H. H. Tseng, R. Jammy, T. J. King Liu, and C. Hu," Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing," VLSI Tec. Dig., 2010, pp. 121 - 122.
    [6-3] W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu," Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec", IEEE Electron Device Lett., vol. 28, no. 8, pp. 743 - 745, Aug. 2007.
    [6-4] F. Mayer, C. Le Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus,” Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance,” IEDM Tech. Dig., 2008, p. 163-167.
    [6-5] T. Krishnamohan, D. Kim, S. Raghunathan, K. Saraswat,” Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With Record High Drive Currents and <60mV/dec Subthreshold Slope,” IEDM Tec. Dig. 2008, pp. 947-949.
    [6-6] W. Y. Loh, K. Jeon, C. Y. Kang, J. Oh, P. Patel, C. Smith, J. Barnett, C. Park, T. J. K. Liu, H. H. Tseng, P. Majhi, R. Jammy and C. Hu," Sub-60nm Si Tunnel Field Effect Transistors with Ion >100 μA/μm," ESSDERC, 2010, pp.162-165.
    [6-7] S. H. Kim, H. Kam, C. Hu and T. J. K. Liu," Germanium-Source Tunnel Field Effect Transistors with Record High ION/IOFF," Symp. VLSI Tec. Dig., 2009, pp. 178 - 179.
    [6-8] A. S. Verhulst, B. Sorée, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken," Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor", J. Appl. Phys., vol. 107, pp. 024518-1 - 024518-8, Jan. 2010.
    [6-9] Y. Lu, A. Seabaugh, P. Fay, S. J. Koester, S. E. Laux, W. Haensch, and S. O. Koswatta," Geometry dependent Tunnel FET performance - Dilemma of electrostatics vs. quantum confinement," Device Research Conference, 2010, pp. 17-18.
    [6-10] Int. Technology. Roadmap for Semiconductors (ITRS), 2011, (http://www.itrs.net/Links/2011ITRS/Home2011.htm)
    [6-11] User’s Manual for Synopsys SDevice.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE