研究生: |
朱浚學 Chu, Chun-Hsueh |
---|---|
論文名稱: |
Design of CMOS RF Transmit/Receive Switch and Low Noise Amplifier 互補式金氧半射頻收發切換開關及低雜訊放大器之設計 |
指導教授: |
黃智方
Huang, Chih-Fang 龔正 Gong, Jeng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 射頻 、互補式金氧半 、開關 、低雜訊放大器 、主動電感 、收發器 |
外文關鍵詞: | RF, CMOS, switch, LNA, low noise amplifier, transceiver |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的在於研究以互補式金氧半場效電晶體來設計高功率、低損耗之射頻收發切換開關及探討主動電感在射頻低雜訊放大器之應用。論文中共提出了900-MHz、 Wide-band(2-GHz to 5.8-GHz)與 DC-10 GHz broadband三種射頻收發切換開關。此外,吾人提出堆疊式的架構、高基板隔離度及電晶體基體浮接等技巧以改善射頻收發切換開關之功率處理能力並降低損耗。吾人利用商用標準0.18-um的互補式金氧半製程設計的900-MHz之射頻收發切換開關可達到30 dBm的P1dB,1.0 dB的穿透損耗及35.2 dB的隔離度。而 Wide-band射頻收發切換開關在5.8 GHz可達到27 dBm的P1dB、1.28 dB的穿透損耗及24 dB的隔離度。DC-10 GHz broadband 射頻收發切換開關在10 GHz可達到27 dBm的P1dB、1.69 dB的穿透損耗、小於 -15 之 S11 與S22 參數值。
另外,吾人研製主動電感以應用於無線區域網路,我們選擇將主動電感耦合於5.7-GHz低雜訊放大器之源極端以增加線性度並達到縮小晶片面積的目的。此電路在5.7-GHz的量測特性如下:小訊號增益為17 dB,雜訊指數為3.4 dB,線性度 (IIP3) 達 -7 dBm。
This thesis presents comprehensive methods for the design of RF CMOS Transmit/Receive switch with high power-handling capability and low insertion loss. Techniques such as RF floated body to extend the bandwidth and decrease the insertion loss, and stacking architecture with high substrate isolation to enhance the power-handling capability are used for the design of the T/R switch on a standard 0.18um triple-well CMOS process. The measured performance of the T/R switch designed at 900-MHz demonstrates the effectiveness of the methods presented in this dissertation such that insertion loss less than 1 dB, isolation up to 35.2 dB, and input 1-dB compression point of 30-dBm can be achieved. Besides, insertion loss less than 1.28-dB, isolation higher than 24 dB, and input 1-dB compression point of 27-dBm can be achieved for the switch designed at 5.8-GHz. The switch designed for DC-10 GHz applications can reach insertion loss less than 1.69 dB, with S11 and S22 smaller than -15, and input 1-dB compression point of 27-dBm.
Moreover, this dissertation presents a novel application of the active inductor in the design of the low noise amplifier (LNA). To reduce the silicon area consumed by the LNA without sacrificing its linearity, the passive source-degenerated inductor in the conventional design is replaced with the active inductor. The LNA is fabricated with a standard 0.18-um CMOS process. Compared with previous arts, this LNA exhibits good figure of merit (FOM) based on its power consumption of 19 mW, measured power gain of 17 dB, input third-order intercept point of -7 dBm, and noise figure of 3.4 dB at 5.7-GHz.
References
[1] H. Uda, T. Yamada, T. Sawai, K. Nogawa, and Y. Harada, High-performance GaAs switch IC’s fabricated using MESFET’s with two kinds of pinch-off voltages and a symmetrical pattern configuration, IEEE J. Solid-State Circuits 29 (1994) 1262-1269.
[2] T. Tokumitsu, I. Toyoda, and M. Aikawa, A low-voltage, high power T/R-switch MMIC using LC resonators, IEEE Trans. Microwave Theory Tech. 43 (1995) 997-1003.
[3] K. Miyatsuji and D. Ueda, A GaAs high power RF single pole dual throw switch IC for digital mobile communication system, IEEE J. Solid-State Circuits 30 (1995) 979-983.
[4] N. Imai, A. Minakawa, and H. Okazaki, Novel high-isolation FET switches, IEEE Trans. Microwave Theory Tech. 44 (1996) 685-691.
[5] K. Yamamoto, et al., A 2.2-V operation, 2.4-GHz single-chip GaAs MMIC transceiver for wireless applications, IEEE J. Solid-State Circuits 34 (1999) 502-512.
[6] S. Makioka, Y. Anda, K. Miyatsuji, and D. Ueda, Super self-aligned GaAs RF switch IC with 0.25 dB extremely low insertion loss for mobile communication systems, IEEE Trans. Electron Devices 48 (2001) 1510-1514.
[7] S. Mil’shtein and C. Liessner, High speed switch using pairs of pHEMTs with shifted gates, Microelectronics J. 36 (2005) 316-318.
[8] F.-J. Huang and K. O, A 0.5-um T/R switch for 900 MHz wireless applications, IEEE J. Solid-State Circuits 36 (2001) 486-492.
[9] F.-J. Huang and K. O, Single-pole double-throw CMOS switches for 900-MHz and 2.4-GHz applications on p-silicon substrates, IEEE J. Solid-State Circuits 39 (2004) 35-41.
[10] Z. Li, H. Yoon, F.-J. Huang, and K. O, 5.8 GHz CMOS T/R switches with high and low substrate resistances in a 0.18-um CMOS process, IEEE Microwave Wireless Components Lett. 13 (2003) 1-3
[11] T. Ohnakado, S. Yamakawa, T. Murakami, A. Furukawa, E. Taniguchi, H. Ueda, N. Suematsu, and T. Oomori, A 21.5 dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division effect of stacked transistor configuration with depletion-layer-extended transistors (DETs), IEEE J. Solid-State Circuits 39 (2004) 577-584.
[12] N.A. Talwalker, C.P. Yue, and S.S. Wong, An integrated 5.2 GHz CMOS T/R switch with LC-tuned substrate bias, IEEE Int. Solid-State Circuits Conf., 2003; 362-363.
[13] N.A. Talwalker, C.P. Yue, and S.S. Wong, Integrated CMOS Transmit-Receive switch using LC-tuned substrate bias for 2.4-GHz and 5.2-GHz applications, IEEE J. Solid-State Circuits 39 (2004) 863-870.
[14] M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang and H. Wang, Design and analysis for a Miniature CMOS SPDT Switch Using Body-Floating Technique to Improve Power Performance, IEEE Trans. Microwave Theory Tech. 54 (2006) 31-39.
[15] W. Wu, S. Lam, and M. Chan, A Wide-Band T/R Switch Using Enhanced Compact Waffle MOSFETs, IEEE Microwave Wireless Components Lett. 16 (2006) 287-289.
[16] H. Xu and K.O, A 31.3-dBm Bulk CMOS T/R Switch using Stacked Transistors with Sub-Design-Rule Channel Length in Floated p-wells, IEEE J. Solid-State Circuits, 42 (2007) 2528-2534.
[17] Y. Jin and C. Nguyen, A 0.25-um CMOS T/R switch for UWB wireless communications, IEEE Microwave Wireless Compon. Lett. 15 (2005), 502-504.
[18] K. -H Pao, C.-Y. Hsu, H.-R. Chuang, and C.-Y Chen, Design of a 3-10 GHz UWB CMOS T/R switch, Microwave and Optical Tech. Lett. 50 (2008), 457-460
[19] E. H. Westerwick, “A 5 GHz band low noise amplifier with a 2.5 dB noise figure,” in Proc. IEEE Int. Symp. VLSI Technology, Systems, and Application, Apr 2001, pp. 224-227.
[20] D. Mukherjee, J.Bhattacharjee, S. Chakaraborty, and J. Laskar, “A 5-6 GHz fully intergrated CMOS LNA for a dual-band WLAN receiver,” in Proc. IEEE RAWCON, Sep 2002, pp. 213-215.
[21] T. K. K. Tsang and M. El-Gamal, “Gain and frequency controllable sub-1 V 5.8 GHz CMOS LNA,” in Proc. ISCAS, vol. 4, May 2002, pp. 795-798
[22] H. W. Chiu and S. S. Lu, “A 2.17 dB NF, 5GHz band monolithic CMOS LNA with 10 mW DC power consumption,” in IEEE Symp. VLSI circuits Dig. Tech. Papers, Jun 2002, pp. 226-229.
[23] W. Jeamsaksiri, A. Mercha, J. Ramos, D. Linten, S. Thijs, S. Jenei, C. Detcheverry, P. Wambacq, R. Velghe, and S. Decoutere, “Integration of a 90 nm RF CMOS technology (200 GHz fmax – 150 GHz fT NMOS) demonstrated on a 5 GHz LNA,” in IEEE Symp. VLSI Technology Dig. Tech. Papers, Jun 2004, pp. 100-101.
[24] D. Linten, L. Aspemyr, W. Jeamsaksiri, J. Ramos, A. Mercha, S. Jenei, S. Thijs, R. Garcia, H. Jacobsson, P. Wambacq, S. Donnay, and S. Decoutere, “ Low-power 5 GHz LNA and VCO in 90nm RF CMOS,” in IEEE Symp. VLSI circuits Dig. Tech. Papers, Jun 2004, pp. 372-375.
[25] P. Leroux and M. Steyaert, “A 5 GHz CMOS low-noise amplifier with inductive EDS protection exceeding 3 kV HBM,” in Proc Eur. Solid-State Circuits Conf., Sep 2004, pp. 295-298.
[26] C. Y. Cha and S. G. Lee, “A 5.2 GHz LNA in 0.35 um CMOS utilizing inter-stage series resonance and optimizing the substrate resistance,” IEEE Journal of Solid-State Circuits, vol. 38, no.4, pp.669-672, Apr 2003.
[27] Raja, M., Boon, T., Kumar, K., and Wong, S. “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN,” IEEE Radio Frequency Integrated Circuits Symposium, pp.439-422, 2003.
[28] H. W. Chiu, S. S. Lu, and Y. S. Lin, “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW dc power consumption,” IEEE Transactions on Microwave Theory and Techniques, vol.53, no.3, pp.813-824, Mar 2005.
[29] D. Linten, S. Thijs, M.I. Natarajan, P. Wambacq, W. Jeamsaksiri, J. Ramos, A. Mercha, S. Jenei, S. Donnay, and S. Decoutere, “A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, no.7, pp.1434-1442, July 2005.
[30] Y. S. Wang and L. H. Lu, “5.7GHz low-power variable-gain LNA in 0.18-um CMOS,” Electronics Letters, vol. 40, no. 2, pp.66-68, Jan 2005.
[31] S. Asgaran, M.J. Deen and Chih-Hung Chen, “A 4-mW monolithic CMOS LNA at 5.7 GHz with the gate resistance used for input matching,” IEEE Microwave and wireless components letters, vol. 16, no. 4, pp.188-190, April 2006.
[32] S. Asgaran, M.J. Deen and Chih-Hung Chen, “Design of the input matching network of RF CMOS LNAs for low-power operation,” IEEE Transactions on Circuits and Systems, vol. 54, no. 3, pp.544-554, Mar 2007.
[33] Hara, S., “Broad-band monolithic microwave active inductor and its application to miniaturized wide-band amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol.36, no.12, pp.1920-1924, Dec 1988.
[34] S. Lucyszyn and I.D. Robertson, “Monolithic narrow-band filter using ultrahigh-Q tunable active inductors,” IEEE Transactions on Microwave Theory and Techniques , pp.2617-2622, Dec.1994.
[35] H. Hayashi, M. Muraguchi, “A high-Q broad-band active inductor and its application to a low-loss analog phase shifter,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 12, pp.2369-2314, Dec.1996.
[36] A. Thanachayanont and A. Payne, “VHF CMOS integrated active inductor,” Electronics Letters, vol. 32, no.11, pp.999-1000, May 1996.
[37] U. Yodprasit, J. Ngarmnil, “Q-enhancing technique for RF CMOS active inductor,” IEEE International Symposium on Circuits and Systems, vol. 5, pp.589-592, May 2000.
[38] M. Grozing, A. Pascht and M.Berroth, “A 2.5 V CMOS differential active inductor with tunable L and Q for frequencies up to 5 GHz,” IEEE Radio Frequency Integrated Circuits Symposium, pp.271-274, May 2001.
[39] Y. Wu, X. Ding, and M. Ismail, “RF bandpass filter design based on CMOS active inductors,” IEEE Transactions on Circuits and Systems, vol.50, pp.942-949, Dec. 2003.
[40] H. Xiao, R. Schaumann, W.R. Daasch, P.K. Wong, and B. Pejcinovic, “A radio-frequency CMOS active inductor and its application in designing high-Q filters,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 3750-3753, May 2004.
[41] J. Chen, F. Saibi, J. Lin, and K. Azadet, “Electrical backplane equalization using programmable analog zeros and folded active inductors,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp.1459-1466, no.7, July 2007.
[42] B. Maundy, S. Gift, and Peter Aronhime, “A Novel Hybrid Active Inductor” IEEE Transactions on Circuits and Systems, vol.54, pp.663-667, Aug. 2007.
[43] A. Thanachayanont and A. Payne, “A 3-V RF CMOS bandpass amplifier using an active inductor,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 440-443 , May 1998
[44] W. Zhuo , J. Pineda de Gyvez and E. Sanchez-Sinencio, “Programmable low noise amplifier with active-inductor load,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 365-368,1998.
[45] F. Carreto-Castro, J. Silva-Martinez, and R. Murphy-Arteaga, “RF Low-Noise Amplifiers in BiCMOS Technologies,” IEEE Transactions On Circuits and Systems, vol. 46, pp. 974-977, July 1999.
[46] K. Sharaf, “2-V, 1-GHz CMOS inductorless LNAs with 2-3dB NF,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 2, pp.714-717, Aug 2000.
[47] A. Pascht, J. Fischer, and M. Berroth , “A CMOS low noise amplifier at 2.4 GHz with active inductor load,” in Silicon Monolithic Integrated Circuits RF Syst. , Tech. Dig., 2001.
[48] Ro-Min Weng and Pei-Shan Lin, “A 2V CMOS low noise amplifier with tunable image filtering,” IEEE Asia Pacific Conference on Circuits and Systems, pp.293-296, Dec 2004.
[49] Ler Chun Lee, Abu Khari bin Aapos;ain; Kordesch, A.V., “A 2.4-GHz CMOS tunable image-rejection low-noise amplifier with active inductor,” IEEE Asia Pacific Conference on Circuits and Systems, pp.1679-1682, Dec 2006.
[50] Nair, M.U., Yuanjin Zheng and Yong Lian, “An active inductor based low-power UWB LNA,” IEEE International Conference on Ultra-Wideband, pp.813-816, Sept 2007.