簡易檢索 / 詳目顯示

研究生: 郭哲宏
Kuo, Je-Hung
論文名稱: 抗血管新生趨化素CXCL4及CXCL4L1的結構與功能研究:趨化素C端螺旋二級結構的空間位向如何決定其分子功能
Structure and Function Study of the Anti-angiogenic Chemokines, CXCL4 and CXCL4L1: How the C-Terminal Helix Orientation determines the Chemokine Function.
指導教授: 吳文桂
Wu, Wen-Guey
口試委員: 蘇士哲
Sue, Shih-Che
陳金榜
Chen, Chinpan
蕭傳鐙
Hsiao, Chwan-Deng
莊偉哲
Chuang, Woei-Jer
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 127
中文關鍵詞: 趨化分子肝素血小板因子四號血管新生
外文關鍵詞: Chemokine, Heparin, Platelet factor 4, Angiogenesis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 趨化素是一種分泌性蛋白質,其隸屬細胞激素的一類,此類小分子蛋白質支配多種生物性的程序。僅管在胺基酸序列的相似度不高,這些趨化素傾向形成相似且高度保留的三級結構,此結構是由三個反向排列的 beta 摺板為中心,接續為折疊在 beta 摺板上的羧基末端 alpha 螺旋結構。在結構上高度保留的特性,允許這類趨化素具有與細胞表面的醣胺多醣分子相互結合的功能,此功能攸關這些趨化素移動到生物體特定位置的能力。近期所發現且分離出更具有抑制血管新生的趨化素配體四號變異蛋白 (CXCL4L1) 是趨化素四號蛋白 (CXCL4; PF-4) 的變異型,在胺基酸序列上僅只有位於羧基末端的三個胺基酸殘基不同。在此研究中,我們利用蛋白質結晶法及X光繞射的技術成功解析出趨化素配體四號變異蛋白的結構由三維結構顯示,其羧基端的 alpha 螺旋二級結構和空間方位呈現全新結構,與以往所知的趨化素有著顯著的不同。由於不同空間位向的羧基端 alpha 螺旋結構,使整個 alpha 螺旋突出且暴露於水溶液環境中。這特殊的 alpha 螺旋結構在空間的位向,改變了趨化素整體的外型以及蛋白表面的特性,此改變導致其分子與醣胺多醣分子結合能力下降。在我們利用一系列突變蛋白質以及結合核磁共振與表面電漿共振實驗中進一步顯示,其第六十七號胺基酸殘基的變異是同時造成 alpha 螺旋結構的改變以及降低與醣胺多醣分子結合的原因,然而另外兩個胺基酸殘基則為次要角色。最後由我們的結果提出,在羧基端的 alpha 螺旋結構上的重新排列不僅支配其抗血管新生的活性,同時涉及到這類分子在細胞內擴散的效應,所有的數據支持僅僅基於蛋白質一級胺基酸序列的不同,便能使其趨化素改變蛋白質的三維結構,進而調控與細胞表面的認知。


    Chemokines, a sub-family of cytokines, are small, secreted proteins that mediate a variety of biological processes. Various chemokines, despite the low degree of sequence homology, adopt remarkable conserved tertiary structure comprising an anti-parallel beta-sheet core domain followed by a C-terminal helix that packs onto the beta-sheet despite the low degree of sequence homology. The conserved structural feature allows chemokines to bind cell surface glycosaminoglycans (GAGs), crucially for recruitment of chemokines to a specific anatomical location. The recently isolated variant, CXCL4L1, is a homologue of CXCL4 chemokine (or platelet factor 4, PF-4) with potent anti-angiogenic activity and differed only in three amino acid residues of P58L, K66E and L67H. In this study, we show by X-ray structural determination that CXCL4L1 adopts a novel structure at its C-terminus. The orientation of the C-terminal helix protrudes into the aqueous space to expose the entire helix. The alternative helix orientation modifies the overall chemokine shape and surface properties. This change results in the decrease of its GAG-binding properties. A combined NMR and SPR investigation on a set of intrinsic mutants further shows that L67H is mainly responsible for the swing-out effect of the helix and the reduced GAGs binding activities, while mutations of P58L and K66E act secondarily. Our results demonstrate that the structural reorganization of the C-terminal helix mediates their anti-angiogenic effects and diffusibility. The data suggest that based on just three mutations in the primary sequence, chemokine enables to adapt an alternate C-terminal helix conformation to alter the cell surface recognition.

    CHAPTER 1: GENERAL INTRODUCTION OF CHEMOKINES /1 The Chemokine Universe /1 Structural Characteristics of Chemokines /2 Binding Partners of Chemokines /4 Biological Activities of Chemokines /6 Topic: Angiostatic Chemokines CXCL4 and CXCL4L1 /10 CHAPTER 2: CXCL4 A-B DIMER AS A HEPARIN-BINDING UNIT /16 Introduction /16 Experimental Procedures /18 Sample Preparation /18 NMR Spectroscopy /19 Size-exclusion Chromatography /20 Circular Dichroism Measurement /20 SPR Heparin Binding and Competition Assay /20 Results and Discussion /22 The structural architecture was remained under reduction condition /22 Deficiency of disulfide bonds alter both oligomerization and heparin-binding affinity /23 Reduced heparin affinity was correlated with oligomerization state /23 A-B Dimer as a heparin-binding unit /24 CHAPTER 3: BIOCHEMICAL CHARACTERISTICS OF CXCL4 AND CXCL4L1 /32 Introduction /32 Experimental Procedures /33 Sample Preparation /33 Analytical Ultracentrifugation Analysis. /35 ANS binding Assay /35 Small Angle X-ray Scattering (SAXS) /35 Results and Discussion /36 Different structure and hydrophobicity of CXCL4L1 /36 CXCL4L1 exhibits as tetramer /37 Weaker heparin-binding ability of CXCL4L1 /37 CHAPTER 4: CRYSTAL STRUCTURE OF CXCL4L1 /43 Introduction /43 Experimental Procedures /44 Sample Preparation /44 Crystallization Method /44 Data Collection and Processing /44 Determination and Refinement of CXCL4L1 Structure /45 Protein Data Bank Accession Number /45 Results and Discussion /46 Crystal structure of CXCL4L1 /46 Structural divergence between CXCL4L1 and CXCL4 /47 Positive charged distribution on surface of CXCL4L1 and CXCL4 /47 C-terminal orientation of monomer structure of CXCL4L1 /48 Structural topology and hydrogen bond representation of CXCL4L1 and CXCL4 /48 Another Different Space Group of CXCL4L1 Structure /50 Alternate C-terminal Helical Orientation and Conformation Regulate Functions /51 Chemokine Heteromerization /51 CHAPTER 5: SINGLE MUTATION EFFECT ON CHEMOKINE FOLDING AND STABILITY /60 Introduction /60 Experimental Procedures /61 Sample Preparation /61 Results and Discussion /63 CXCL4L1 is not stable upon reduction of the disulfide linkages /63 Effect of single mutations on chemokine folding and stability /63 Effect of single mutations on chemokine heparin binding /64 Implications to other chemokine family /65 CHAPTER 6: STRUCTURE AND FUNCTION RELEVANCE OF CHEMOKINES /72 Introduction /72 Experimental Procedures /73 Enzyme-linked Immunosorbent Assay /73 Fluorescence Titration Assay /73 Results and Discussion /74 LPS-binding ability: structure relative to function of chemokines /74 SUPPLEMENTAL FIGURES AND TABLES /77 REFERENCES /83 APPENDIX /95 SECTION 1: PI(4,5)P2 SPECIFIC BINDING TO FGF-2 /95 Introduction /95 Experimental Procedures /97 Materials and Reagents /97 Sample Preparation /97 Isotherml Titration Calorimetry /98 NMR Spectroscopy /99 Results and Discussion /100 Quantitatively binding measurement by ITC /100 Identification phosphate group specificity on FGF-2 binding /100 Description of the FGF-2-IP(1,4,5)3 Binding Region /102 SECTION 2: THE INTERACTIONS BETWEEN FGF-2 AND MODEL MEMBERANE /109 Introduction /109 Experimental Procedures /111 Sample Preparation /111 NMR Spectroscopy / 111 Large Unilamellar Vesicles (LUVs) Preparation /112 Surface Plasmon Resonance Measurement /112 Intrinsic Fluorescence Assay /113 Docking Model by AUTODOCK /113 Results and Discussion /114 The identical binding region of FGF-2 on micelle comprising PI(4,5)P2 /114 The cholesterol/ sphingomyelin-mediated binding of FGF-2 on LUVs /115 FGF-2 directly interacts with model membrane /116 The presumed membrane-binding model of FGF-2 /117 SUPPLEMENTAL FIGURES AND TABLES /123 REFERENCES /124

    1. Nomiyama, H., Osada, N., and Yoshie, O. (2011) A family tree of vertebrate chemokine receptors for a unified nomenclature, Dev Comp Immunol 35, 705-715.
    2. Le, Y., Zhou, Y., Iribarren, P., and Wang, J. (2004) Chemokines and chemokine receptors: their manifold roles in homeostasis and disease, Cell Mol Immunol 1, 95-104.
    3. Luster, A. D. (1998) Chemokines--chemotactic cytokines that mediate inflammation, N Engl J Med 338, 436-445.
    4. Raman, D., Sobolik-Delmaire, T., and Richmond, A. (2011) Chemokines in health and disease, Exp Cell Res 317, 575-589.
    5. Schall, T. J., and Proudfoot, A. E. (2011) Overcoming hurdles in developing successful drugs targeting chemokine receptors, Nat Rev Immunol 11, 355-363.
    6. Salanga, C. L., and Handel, T. M. (2011) Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function, Exp Cell Res 317, 590-601.
    7. Galzi, J. L., Hachet-Haas, M., Bonnet, D., Daubeuf, F., Lecat, S., Hibert, M., Haiech, J., and Frossard, N. (2010) Neutralizing endogenous chemokines with small molecules. Principles and potential therapeutic applications, Pharmacol Ther 126, 39-55.
    8. Zlotnik, A., and Yoshie, O. (2000) Chemokines: a new classification system and their role in immunity, Immunity 12, 121-127.
    9. Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., Stan, T. M., Fainberg, N., Ding, Z., Eggel, A., Lucin, K. M., Czirr, E., Park, J. S., Couillard-Despres, S., Aigner, L., Li, G., Peskind, E. R., Kaye, J. A., Quinn, J. F., Galasko, D. R., Xie, X. S., Rando, T. A., and Wyss-Coray, T. (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function, Nature 477, 90-94.
    10. Vandercappellen, J., Van Damme, J., and Struyf, S. (2008) The role of CXC chemokines and their receptors in cancer, Cancer Lett 267, 226-244.
    11. de Oliveira, S., Reyes-Aldasoro, C. C., Candel, S., Renshaw, S. A., Mulero, V., and Calado, A. (2013) Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response, J Immunol 190, 4349-4359.
    84
    12. Rius, C., Company, C., Piqueras, L., Cerda-Nicolas, J. M., Gonzalez, C., Servera, E., Ludwig, A., Morcillo, E. J., and Sanz, M. J. (2013) Critical role of fractalkine (CX3CL1) in cigarette smoke-induced mononuclear cell adhesion to the arterial endothelium, Thorax 68, 177-186.
    13. Clore, G. M., and Gronenborn, A. M. (1995) Three-dimensional structures of alpha and beta chemokines, Faseb J 9, 57-62.
    14. Fernandez, E. J., and Lolis, E. (2002) Structure, function, and inhibition of chemokines, Annu Rev Pharmacol Toxicol 42, 469-499.
    15. Allen, S. J., Crown, S. E., and Handel, T. M. (2007) Chemokine: receptor structure, interactions, and antagonism, Annu Rev Immunol 25, 787-820.
    16. Lortat-Jacob, H., Grosdidier, A., and Imberty, A. (2002) Structural diversity of heparan sulfate binding domains in chemokines, Proc Natl Acad Sci U S A 99, 1229-1234.
    17. Harada, K., Shimoda, S., Ikeda, H., Chiba, M., Hsu, M., Sato, Y., Kobayashi, M., Ren, X. S., Ohta, H., Kasashima, S., Kawashima, A., and Nakanuma, Y. (2011) Significance of periductal Langerhans cells and biliary epithelial cell-derived macrophage inflammatory protein-3alpha in the pathogenesis of primary biliary cirrhosis, Liver Int 31, 245-253.
    18. Campanella, G. S., Grimm, J., Manice, L. A., Colvin, R. A., Medoff, B. D., Wojtkiewicz, G. R., Weissleder, R., and Luster, A. D. (2006) Oligomerization of CXCL10 is necessary for endothelial cell presentation and in vivo activity, J Immunol 177, 6991-6998.
    19. Proudfoot, A. E., Power, C. A., Rommel, C., and Wells, T. N. (2003) Strategies for chemokine antagonists as therapeutics, Semin Immunol 15, 57-65.
    20. Zlotnik, A., and Yoshie, O. (2012) The chemokine superfamily revisited, Immunity 36, 705-716.
    21. Balkwill, F. R. (2012) The chemokine system and cancer, J Pathol 226, 148-157.
    22. Nomiyama, H., Osada, N., and Yoshie, O. (2010) The evolution of mammalian chemokine genes, Cytokine Growth Factor Rev 21, 253-262.
    23. Balestrieri, M. L., Balestrieri, A., Mancini, F. P., and Napoli, C. (2008) Understanding the immunoangiostatic CXC chemokine network, Cardiovasc Res 78, 250-256.
    85
    24. Park, P. W., Reizes, O., and Bernfield, M. (2000) Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters, J Biol Chem 275, 29923-29926.
    25. Maccarana, M., Sakura, Y., Tawada, A., Yoshida, K., and Lindahl, U. (1996) Domain structure of heparan sulfates from bovine organs, J Biol Chem 271, 17804-17810.
    26. Kuschert, G. S., Coulin, F., Power, C. A., Proudfoot, A. E., Hubbard, R. E., Hoogewerf, A. J., and Wells, T. N. (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses, Biochemistry 38, 12959-12968.
    27. Hirose, J., Kawashima, H., Yoshie, O., Tashiro, K., and Miyasaka, M. (2001) Versican interacts with chemokines and modulates cellular responses, J Biol Chem 276, 5228-5234.
    28. Wagner, L., Yang, O. O., Garcia-Zepeda, E. A., Ge, Y., Kalams, S. A., Walker, B. D., Pasternack, M. S., and Luster, A. D. (1998) Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans, Nature 391, 908-911.
    29. Liehn, E. A., Piccinini, A. M., Koenen, R. R., Soehnlein, O., Adage, T., Fatu, R., Curaj, A., Popescu, A., Zernecke, A., Kungl, A. J., and Weber, C. (2010) A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice, J Am Coll Cardiol 56, 1847-1857.
    30. Laguri, C., Sadir, R., Rueda, P., Baleux, F., Gans, P., Arenzana-Seisdedos, F., and Lortat-Jacob, H. (2007) The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4, PLoS One 2, e1110.
    31. Melik-Parsadaniantz, S., and Rostene, W. (2008) Chemokines and neuromodulation, J Neuroimmunol 198, 62-68.
    32. Murdoch, C., and Finn, A. (2000) Chemokine receptors and their role in inflammation and infectious diseases, Blood 95, 3032-3043.
    33. Keeley, E. C., Mehrad, B., and Strieter, R. M. (2011) Chemokines as mediators of tumor angiogenesis and neovascularization, Exp Cell Res 317, 685-690.
    34. Mukaida, N., and Baba, T. (2012) Chemokines in tumor development and progression, Exp Cell Res 318, 95-102.
    86
    35. Bikfalvi, A. (2012) Angiogenesis and invasion in cancer, Handb Clin Neurol 104, 35-43.
    36. Kiefer, F., and Siekmann, A. F. (2011) The role of chemokines and their receptors in angiogenesis, Cell Mol Life Sci 68, 2811-2830.
    37. Bikfalvi, A., Moenner, M., Javerzat, S., North, S., and Hagedorn, M. (2011) Inhibition of angiogenesis and the angiogenesis/invasion shift, Biochem Soc Trans 39, 1560-1564.
    38. Bikfalvi, A. (2009) [Tumoral angiogenesis: models, targets and inhibition], J Soc Biol 203, 167-170.
    39. Schwartzkopff, F., Grimm, T. A., Lankford, C. S., Fields, K., Wang, J., Brandt, E., and Clouse, K. A. (2009) Platelet factor 4 (CXCL4) facilitates human macrophage infection with HIV-1 and potentiates virus replication, Innate Immun 15, 368-379.
    40. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P. (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells, Science 270, 1811-1815.
    41. Nguyen, L. T., and Vogel, H. J. (2012) Structural perspectives on antimicrobial chemokines, Frontiers in Immunology 3, 384.
    42. Flad, H. D., and Brandt, E. (2010) Platelet-derived chemokines: pathophysiology and therapeutic aspects, Cell Mol Life Sci 67, 2363-2386.
    43. Koenen, R. R., and Weber, C. (2011) Chemokines: established and novel targets in atherosclerosis, EMBO Mol Med 3, 713-725.
    44. Weber, C., and Noels, H. (2011) Atherosclerosis: current pathogenesis and therapeutic options, Nat Med 17, 1410-1422.
    45. Scholten, D. J., Canals, M., Maussang, D., Roumen, L., Smit, M. J., Wijtmans, M., de Graaf, C., Vischer, H. F., and Leurs, R. (2012) Pharmacological modulation of chemokine receptor function, Br J Pharmacol 165, 1617-1643.
    46. Koelink, P. J., Overbeek, S. A., Braber, S., de Kruijf, P., Folkerts, G., Smit, M. J., and Kraneveld, A. D. (2012) Targeting chemokine receptors in chronic inflammatory diseases: an extensive review, Pharmacol Ther 133, 1-18.
    47. Van Sweringen, H. L., Sakai, N., Tevar, A. D., Burns, J. M., Edwards, M. J., and Lentsch, A. B. (2011) CXC chemokine signaling in the liver: impact on repair and regeneration, Hepatology 54, 1445-1453.
    87
    48. Gleissner, C. A., von Hundelshausen, P., and Ley, K. (2008) Platelet chemokines in vascular disease, Arterioscler Thromb Vasc Biol 28, 1920-1927.
    49. Moser, B., Wolf, M., Walz, A., and Loetscher, P. (2004) Chemokines: multiple levels of leukocyte migration control, Trends Immunol 25, 75-84.
    50. Strieter, R. M., Burdick, M. D., Mestas, J., Gomperts, B., Keane, M. P., and Belperio, J. A. (2006) Cancer CXC chemokine networks and tumour angiogenesis, Eur J Cancer 42, 768-778.
    51. Keeley, E. C., Mehrad, B., and Strieter, R. M. (2010) CXC chemokines in cancer angiogenesis and metastases, Adv Cancer Res 106, 91-111.
    52. Zlotnik, A., Yoshie, O., and Nomiyama, H. (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution, Genome Biol 7, 243.
    53. Distler, J. H., Hirth, A., Kurowska-Stolarska, M., Gay, R. E., Gay, S., and Distler, O. (2003) Angiogenic and angiostatic factors in the molecular control of angiogenesis, Q J Nucl Med 47, 149-161.
    54. Balkwill, F. (2004) The significance of cancer cell expression of the chemokine receptor CXCR4, Semin Cancer Biol 14, 171-179.
    55. Zlotnik, A., Burkhardt, A. M., and Homey, B. (2011) Homeostatic chemokine receptors and organ-specific metastasis, Nat Rev Immunol 11, 597-606.
    56. Addison, C. L., Daniel, T. O., Burdick, M. D., Liu, H., Ehlert, J. E., Xue, Y. Y., Buechi, L., Walz, A., Richmond, A., and Strieter, R. M. (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity, J Immunol 165, 5269-5277.
    57. Devalaraja, R. M., Nanney, L. B., Du, J., Qian, Q., Yu, Y., Devalaraja, M. N., and Richmond, A. (2000) Delayed wound healing in CXCR2 knockout mice, J Invest Dermatol 115, 234-244.
    58. Krijgsveld, J., Zaat, S. A., Meeldijk, J., van Veelen, P. A., Fang, G., Poolman, B., Brandt, E., Ehlert, J. E., Kuijpers, A. J., Engbers, G. H., Feijen, J., and Dankert, J. (2000) Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines, J Biol Chem 275, 20374-20381.
    59. Nguyen, L. T., Chan, D. I., Boszhard, L., Zaat, S. A., and Vogel, H. J. (2010) Structure-function studies of chemokine-derived carboxy-terminal antimicrobial peptides, Biochim Biophys Acta 1798, 1062-1072.
    60. Braff, M. H., Hawkins, M. A., Di Nardo, A., Lopez-Garcia, B., Howell, M. D., Wong, C., Lin, K., Streib, J. E., Dorschner, R., Leung, D. Y., and Gallo, R. L.
    88
    (2005) Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities, J Immunol 174, 4271-4278.
    61. Yang, D., Chen, Q., Hoover, D. M., Staley, P., Tucker, K. D., Lubkowski, J., and Oppenheim, J. J. (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity, J Leukoc Biol 74, 448-455.
    62. Garzino-Demo, A., Moss, R. B., Margolick, J. B., Cleghorn, F., Sill, A., Blattner, W. A., Cocchi, F., Carlo, D. J., DeVico, A. L., and Gallo, R. C. (1999) Spontaneous and antigen-induced production of HIV-inhibitory beta-chemokines are associated with AIDS-free status, Proc Natl Acad Sci U S A 96, 11986-11991.
    63. Simionescu, M. (2009) Cellular dysfunction in inflammatory-related vascular disorders' review series. The inflammatory process: a new dimension of a 19 century old story, J Cell Mol Med 13, 4291-4292.
    64. Zernecke, A., and Weber, C. (2010) Chemokines in the vascular inflammatory response of atherosclerosis, Cardiovasc Res 86, 192-201.
    65. Dudek, A. Z., Nesmelova, I., Mayo, K., Verfaillie, C. M., Pitchford, S., and Slungaard, A. (2003) Platelet factor 4 promotes adhesion of hematopoietic progenitor cells and binds IL-8: novel mechanisms for modulation of hematopoiesis, Blood 101, 4687-4694.
    66. Nesmelova, I. V., Sham, Y., Dudek, A. Z., van Eijk, L. I., Wu, G., Slungaard, A., Mortari, F., Griffioen, A. W., and Mayo, K. H. (2005) Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level, J Biol Chem 280, 4948-4958.
    67. Crown, S. E., Yu, Y., Sweeney, M. D., Leary, J. A., and Handel, T. M. (2006) Heterodimerization of CCR2 chemokines and regulation by glycosaminoglycan binding, J Biol Chem 281, 25438-25446.
    68. Venetz, D., Ponzoni, M., Schiraldi, M., Ferreri, A. J., Bertoni, F., Doglioni, C., and Uguccioni, M. (2010) Perivascular expression of CXCL9 and CXCL12 in primary central nervous system lymphoma: T-cell infiltration and positioning of malignant B cells, Int J Cancer 127, 2300-2312.
    69. von Hundelshausen, P., Koenen, R. R., Sack, M., Mause, S. F., Adriaens, W., Proudfoot, A. E., Hackeng, T. M., and Weber, C. (2005) Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium, Blood 105, 924-930.
    89
    70. Paoletti, S., Petkovic, V., Sebastiani, S., Danelon, M. G., Uguccioni, M., and Gerber, B. O. (2005) A rich chemokine environment strongly enhances leukocyte migration and activities, Blood 105, 3405-3412.
    71. Kowalska, M. A., Rauova, L., and Poncz, M. (2010) Role of the platelet chemokine platelet factor 4 (PF-4) in hemostasis and thrombosis, Thromb Res 125, 292-296.
    72. Gleissner, C. A. (2012) Platelet-Derived Chemokines in Atherogenesis: What's New?, Curr Vasc Pharmacol 10, 563-569.
    73. Aidoudi, S., and Bikfalvi, A. (2010) Interaction of PF-4 (CXCL4) with the vasculature: a role in atherosclerosis and angiogenesis, Thromb Haemost 104, 941-948.
    74. Vandercappellen, J., Van Damme, J., and Struyf, S. (2011) The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer, Cytokine Growth Factor Rev 22, 1-18.
    75. Dubrac, A., Quemener, C., Lacazette, E., Lopez, F., Zanibellato, C., Wu, W. G., Bikfalvi, A., and Prats, H. (2010) Functional divergence between 2 chemokines is conferred by single amino acid change, Blood 116, 4703-4711.
    76. Aidoudi, S., Bujakowska, K., Kieffer, N., and Bikfalvi, A. (2008) The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis, PLoS One 3, e2657.
    77. Deuel, T. F., Keim, P. S., Farmer, M., and Heinrikson, R. L. (1977) Amino acid sequence of human platelet factor 4, Proc Natl Acad Sci U S A 74, 2256-2258.
    78. Deuel, T. F., Senior, R. M., Chang, D., Griffin, G. L., Heinrikson, R. L., and Kaiser, E. T. (1981) Platelet factor 4 is chemotactic for neutrophils and monocytes, Proc Natl Acad Sci U S A 78, 4584-4587.
    79. Yeaman, M. R., Yount, N. Y., Waring, A. J., Gank, K. D., Kupferwasser, D., Wiese, R., Bayer, A. S., and Welch, W. H. (2007) Modular determinants of antimicrobial activity in platelet factor-4 family kinocidins, Biochim Biophys Acta 1768, 609-619.
    80. Cole, A. M., Ganz, T., Liese, A. M., Burdick, M. D., Liu, L., and Strieter, R. M. (2001) Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity, J Immunol 167, 623-627.
    81. Auerbach, D. J., Lin, Y., Miao, H., Cimbro, R., Difiore, M. J., Gianolini, M. E., Furci, L., Biswas, P., Fauci, A. S., and Lusso, P. (2012) Identification of the
    90
    platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor, Proc Natl Acad Sci U S A 109, 9569-9574.
    82. Zhang, X., Chen, L., Bancroft, D. P., Lai, C. K., and Maione, T. E. (1994) Crystal structure of recombinant human platelet factor 4, Biochemistry 33, 8361-8366.
    83. Mayo, K. H., Roongta, V., Ilyina, E., Milius, R., Barker, S., Quinlan, C., La Rosa, G., and Daly, T. J. (1995) NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera: a symmetric tetramer, Biochemistry 34, 11399-11409.
    84. Green, C. J., Charles, R. S., Edwards, B. F., and Johnson, P. H. (1989) Identification and characterization of PF-4varl, a human gene variant of platelet factor 4, Mol Cell Biol 9, 1445-1451.
    85. Struyf, S., Burdick, M. D., Proost, P., Van Damme, J., and Strieter, R. M. (2004) Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis, Circ Res 95, 855-857.
    86. Sarabi, A., Kramp, B. K., Drechsler, M., Hackeng, T. M., Soehnlein, O., Weber, C., Koenen, R. R., and Von Hundelshausen, P. (2011) CXCL4L1 inhibits angiogenesis and induces undirected endothelial cell migration without affecting endothelial cell proliferation and monocyte recruitment, J Thromb Haemost 9, 209-219.
    87. Proudfoot, A. E. (2006) The biological relevance of chemokine-proteoglycan interactions, Biochem Soc Trans 34, 422-426.
    88. Hoogewerf, A. J., Kuschert, G. S., Proudfoot, A. E., Borlat, F., Clark-Lewis, I., Power, C. A., and Wells, T. N. (1997) Glycosaminoglycans mediate cell surface oligomerization of chemokines, Biochemistry 36, 13570-13578.
    89. Proudfoot, A. E., Handel, T. M., Johnson, Z., Lau, E. K., LiWang, P., Clark-Lewis, I., Borlat, F., Wells, T. N., and Kosco-Vilbois, M. H. (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines, Proc Natl Acad Sci U S A 100, 1885-1890.
    90. Deutsch, E., Johnson, S. A., and Seegers, W. H. (1955) Differentiation of certain platelet factors related to blood coagulation, Circ Res 3, 110-115.
    91. Struyf, S., Salogni, L., Burdick, M. D., Vandercappellen, J., Gouwy, M., Noppen, S., Proost, P., Opdenakker, G., Parmentier, M., Gerard, C., Sozzani, S., Strieter, R. M., and Van Damme, J. (2011) Angiostatic and chemotactic activities of the CXC
    91
    chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3, Blood 117, 480-488.
    92. de Jong, E. K., de Haas, A. H., Brouwer, N., van Weering, H. R., Hensens, M., Bechmann, I., Pratley, P., Wesseling, E., Boddeke, H. W., and Biber, K. (2008) Expression of CXCL4 in microglia in vitro and in vivo and its possible signaling through CXCR3, J Neurochem 105, 1726-1736.
    93. Stringer, S. E., and Gallagher, J. T. (1997) Specific binding of the chemokine platelet factor 4 to heparan sulfate, J Biol Chem 272, 20508-20514.
    94. Handin, R. I., and Cohen, H. J. (1976) Purification and binding properties of human platelet factor four, J Biol Chem 251, 4273-4282.
    95. Lambert, M. P., Sachais, B. S., and Kowalska, M. A. (2007) Chemokines and thrombogenicity, Thromb Haemost 97, 722-729.
    96. Maurer, A. M., Zhou, B., and Han, Z. C. (2006) Roles of platelet factor 4 in hematopoiesis and angiogenesis, Growth Factors 24, 242-252.
    97. Gewirtz, A. M., Zhang, J., Ratajczak, J., Ratajczak, M., Park, K. S., Li, C., Yan, Z., and Poncz, M. (1995) Chemokine regulation of human megakaryocytopoiesis, Blood 86, 2559-2567.
    98. von Hundelshausen, P., Petersen, F., and Brandt, E. (2007) Platelet-derived chemokines in vascular biology, Thromb Haemost 97, 704-713.
    99. Furuya, M., Tanaka, R., Miyagi, E., Kami, D., Nagahama, K., Miyagi, Y., Nagashima, Y., Hirahara, F., Inayama, Y., and Aoki, I. (2012) Impaired CXCL4 expression in tumor-associated macrophages (TAMs) of ovarian cancers arising in endometriosis, Cancer Biol Ther 13, 671-680.
    100. Fiore, M. M., and Mackie, I. J. (2009) Dual effect of Platelet Factor 4 on the activities of Factor Xa, Biochem Biophys Res Commun 379, 1072-1075.
    101. Arepally, G. M., and Ortel, T. L. (2006) Clinical practice. Heparin-induced thrombocytopenia, N Engl J Med 355, 809-817.
    102. Sandset, P. M. (2010) Immunobiology of heparin-induced thrombocytopenia, Curr Top Microbiol Immunol 341, 193-202.
    103. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes, J Biomol NMR 6, 277-293.
    92
    104. Ernst, J. A., Clubb, R. T., Zhou, H. X., Gronenborn, A. M., and Clore, G. M. (1995) Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR, Science 267, 1813-1817.
    105. Wang, Y. L., Kuo, J. H., Lee, S. C., Liu, J. S., Hsieh, Y. C., Shih, Y. T., Chen, C. J., Chiu, J. J., and Wu, W. G. (2010) Cobra CRISP functions as an inflammatory modulator via a novel Zn2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules, J Biol Chem 285, 37872-37883.
    106. Paavola, C. D., Hemmerich, S., Grunberger, D., Polsky, I., Bloom, A., Freedman, R., Mulkins, M., Bhakta, S., McCarley, D., Wiesent, L., Wong, B., Jarnagin, K., and Handel, T. M. (1998) Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B, J Biol Chem 273, 33157-33165.
    107. Veldkamp, C. T., Peterson, F. C., Pelzek, A. J., and Volkman, B. F. (2005) The monomer-dimer equilibrium of stromal cell-derived factor-1 (CXCL 12) is altered by pH, phosphate, sulfate, and heparin, Protein Sci 14, 1071-1081.
    108. Fiore, M. M., and Mackie, I. M. (2009) Mechanism of low-molecular-weight heparin reversal by platelet factor 4, Thromb Res 124, 149-155.
    109. Kuo, J. H., Chen, Y. P., Liu, J. S., Dubrac, A., Quemener, C., Prats, H., Bikfalvi, A., Wu, W. G., and Sue, S. C. (2013) Alternative C-Terminal Helix Orientation Alters Chemokine Function: Structure of the Anti-angiogenic Chemokine, CXCL4L1, J Biol Chem.
    110. Petoukhov, M. V., and Svergun, D. I. (2013) Applications of small-angle X-ray scattering to biomacromolecular solutions, Int J Biochem Cell Biol 45, 429-437.
    111. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J., and Svergun, D. I. (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis, J Appl Crystallogr 36, 1277-1282.
    112. Cochran, S., Li, C. P., and Ferro, V. (2009) A surface plasmon resonance-based solution affinity assay for heparan sulfate-binding proteins, Glycoconj J 26, 577-587.
    113. Mixon, T. A., and Dehmer, G. J. (2004) Recombinant platelet factor 4 for heparin neutralization, Semin Thromb Hemost 30, 369-377.
    114. (1994) The CCP4 suite: programs for protein crystallography, Acta Crystallogr D Biol Crystallogr 50, 760-763.
    93
    115. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination, Acta Crystallogr D Biol Crystallogr 54, 905-921.
    116. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr 60, 2126-2132.
    117. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr D Biol Crystallogr 66, 213-221.
    118. Laskowski, R. A. (2001) PDBsum: summaries and analyses of PDB structures, Nucleic Acids Res 29, 221-222.
    119. De Sutter, J., Van de Veire, N. R., Struyf, S., Philippe, J., De Buyzere, M., and Van Damme, J. (2012) PF-4var/CXCL4L1 predicts outcome in stable coronary artery disease patients with preserved left ventricular function, PLoS One 7, e31343.
    120. Nesmelova, I. V., Sham, Y., Gao, J., and Mayo, K. H. (2008) CXC and CC chemokines form mixed heterodimers: association free energies from molecular dynamics simulations and experimental correlations, J Biol Chem 283, 24155-24166.
    121. Koenen, R. R., von Hundelshausen, P., Nesmelova, I. V., Zernecke, A., Liehn, E. A., Sarabi, A., Kramp, B. K., Piccinini, A. M., Paludan, S. R., Kowalska, M. A., Kungl, A. J., Hackeng, T. M., Mayo, K. H., and Weber, C. (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice, Nat Med 15, 97-103.
    122. Gouwy, M., Struyf, S., Noppen, S., Schutyser, E., Springael, J. Y., Parmentier, M., Proost, P., and Van Damme, J. (2008) Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events, Mol Pharmacol 74, 485-495.
    123. Lasagni, L., Grepin, R., Mazzinghi, B., Lazzeri, E., Meini, C., Sagrinati, C., Liotta, F., Frosali, F., Ronconi, E., Alain-Courtois, N., Ballerini, L., Netti, G. S., Maggi,
    94
    E., Annunziato, F., Serio, M., Romagnani, S., Bikfalvi, A., and Romagnani, P. (2007) PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion, Blood 109, 4127-4134.
    124. Krauel, K., Weber, C., Brandt, S., Zahringer, U., Mamat, U., Greinacher, A., and Hammerschmidt, S. (2012) Platelet factor 4 binding to lipid A of Gram-negative bacteria exposes PF-4/heparin-like epitopes, Blood 120, 3345-3352.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE