簡易檢索 / 詳目顯示

研究生: 朱曉芊
Chu, Hsiao-Chuen
論文名稱: 探討雙特異性去磷酸酶23在肺癌細胞內的生化及生物功能
The Biochemical and Biological Functions of DUSP 23 In Lung Cancer Cells
指導教授: 陳怡榮
Chen, Yi-Rong
蔡世峰
Tsai, Shih-Feng
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 55
中文關鍵詞: 雙特異性去磷酸酶上皮細胞生長因子接受器肺癌
外文關鍵詞: DUSP, EGFR, Src, DUSP23, lung cancer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙特異性去磷酸酶(DUSPs)能將同一個蛋白質上的phosphotyrosine、phosphoserine /threonine去磷酸化。目前已知有部分的DUSPs會參與MAPKs (mitogen-activated protein kinases)負回饋調控及影響細胞週期,但尚有部份小分子量的DUSPs其功能仍未知。DUSPs家族裡某些成員又稱為非典型DUSPs (atypical DUSPs),因其僅含有catalytic domain。DUPS23是目前已知最小分子量的非典型DUSP,由151個胺基酸組成,分子量約16kDa,功能未知。根據文獻,DUSP23在人類胎兒的各種組織中均有表現,但成年人只在睪丸(testis)以及結腸(colon)中有表現。由microarray、RT-PCR及西方墨點法的實驗結果可知,有EGFR或EGFR mutant過量表現的H1299細胞株,其DUSP23的表現量會受到抑制。DUSP23會抑制EGF誘發的EGFR磷酸化,也會抑制Src的活性,然而在in vitro的去磷酸化實驗中均顯示pEGFR、pSrc皆不是DUSP23的受質。由研究DUSP23生物功能的實驗結果可知,DUSP23不會影響細胞的生長、移動,但是會影響細胞在三度空間的型態。此外亦發現,在不同非小細胞肺癌細胞株內,其DUPS23表現量和EGFR的表現量沒有相關性。綜合以上實驗結果可知,DUSP23是EGFR signaling pathway的負調控因子,但DUSP23是否經由抑制Src之活性進而抑制EGF誘發的EGFR磷酸化仍屬未知。


    Dual-specificity phosphatases (DUSPs) have the ability to dephosphorylate both phosphotyrosine and phosphoserine/threonine residues. DUSPs are currently known to be involved in the negative regulation of MAPKs (mitogen-activated protein kinases) signaling pathway and cell cycle transitions. However, there are some small DUSPs whose functions remain unknown. Some DUSPs are called atypical DUSPs, because they contain only the consensus DUSP catalytic domain. DUSP23 contains 151 amino acids with molecular mass of 15~16 kDa, and it’s the smallest atypical DUSPs whose function is unknown. According to a previous, DUSP23 was expressed in most fetal tissues but in only testis and colon during adulthood. According to our microarray, RT-PCR, and Western blotting data, we showed that DUSP23 was transcriptionally inhibited when EGFR or mutant EGFR was overexpressed in H1299 non-small cell lung cancer cell line. Moreover, DUSP23 could reduce EGF-induced activation of EGFR and inhibit Src activity. Protein phosphatase assay showed that EGFR and Src were not direct substrates of DUSP23. As for functional assays, we found that DUSP23 could not alter cell growth and migration, but could affect cell morphology in a 3D culture model. And we found there is no significant correlation between the expression levels of EGFR and DUSP23 in several NSCLC cell lines. These results indicated that DUSP23 might be the negative regulator of EGFR signaling pathway in H1299. However, whether DUSP23 reduces EGF-induced activation of EGFR through the inhibition of Src activity is still under investigation.

    中文摘要...........................................................................................................................1 英文摘要...........................................................................................................................2 序言...................................................................................................................................3 材料與方法.......................................................................................................................7 結果..................................................................................................................................23 討論..................................................................................................................................31 參考文獻..........................................................................................................................34 附圖………………………………………………...…………………………….…... ..39 附錄………………………………………………...………………………..……….. ..54

    Aoki, N., Aoyama, K., Nagata, M. and Matsuda, T. (2001) A growing family of dual specificity phosphatases with low molecular masses. J. Biochem. (Tokyo) 130, 133–140
    Adams, J., Williams, S. V., Aveyard, J. S. and Knowles, M. A. (2005) Loss of heterozygosity analysis and DNA copy number measurement on 8p in bladder cancer reveals two mechanisms of allelic loss. Cancer Res. 65, 66–75
    Agarwal, R., Burley, S. K. and Swaminathan, S. (2008) Structure of human dual specificity protein phosphatase 23, VHZ, enzyme-substrate/product complex. J. Biol. Chem. 283, 8946–8953
    Brondello, J. M., Brunet, A., Pouyssegur, J. and McKenzie, F. R. (1997) The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J. Biol. Chem. 272, 1368–1376
    Brondello, J. M., Pouyssegur, J. and McKenzie, F. R. (1999) Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286, 2514–2517
    Brown, M. R., Chuaqui, R., Vocke, C. D., Berchuck, A., Middleton, L. P., mmert-Buck, M. R. and Kohn, E. C. (1999) Allelic loss on chromosome arm 8p: analysis of sporadic epithelial ovarian tumors. Gynecol. Oncol. 74, 98–102
    Biscardi JS, Maa M-C, Tice DA, Cox ME, Leu T-H, Parsons SJ. (1999). c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is ssociated with modulation of receptor function. J Biol Chem 274, 8335–8343
    Burgess AW, Cho H-S, Eigenbrot C, Ferguson KM, Garrett TPJ, Leahy DJ et al. (2003). An Open-and-Shut Case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12, 541–552
    Biscardi JS, Belsches AP, Parsons SJ. (1998) Characterization of human epidermal growth factor receptor and c-Src interactions in human breast tumor cells. Mol Carcinog. 4, 261-72.
    Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ. (2000) Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. Review. 3, 203-210.
    Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U. and Arkinstall, S. (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280, 1262–1265
    Chen Y-R, Fu Y-N, Lin C-H, Yang S-T, Hu S-F, Chen Y-T et al. (2006). Distinctive activation patterns in constitutively active and gefitinib-sensitive EGFR mutants. Oncogene 25, 1205–1215
    Denu, J. M. and Dixon, J. E. (1998) Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr. Opin. Chem. Biol. 2, 633–641
    Denu, J. M. and Dixon, J. E. (1995) A catalytic mechanism for the dual-specific phosphatases. Proc. Natl. Acad. Sci. U.S.A. 92, 5910–5914
    Ekerot, M., Stavridis, M. P., Delavaine, L., Mitchell, M. P., Staples, C., Owens, D. M., Keenan, I. D., Dickinson, R. J., Storey, K. G. and Keyse, S. M. (2008) Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem. J. 412, 287–298
    Emmert-Buck, M. R., Vocke, C. D., Pozzatti, R. O., Duray, P. H., Jennings, S. B., Florence, C. D., Zhuang, Z., Bostwick, D. G., Liotta, L. A. and Linehan, W. M. (1995) Allelic loss on chromosome 8p12-21 in microdissected prostatic intraepithelial neoplasia. Cancer Res. 55, 2959–2962
    Farooq, A. and Zhou, M. M. (2004) Structure and regulation of MAPK phosphatases. Cellular Signalling 16, 769-779
    Furukawa, T., Sunamura, M., Motoi, F., Matsuno, S. and Horii, A. (2003) Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. Am. J. Pathol. 162, 1807–1815
    Furukawa, T., Yatsuoka, T., Youssef, E. M., Abe, T., Yokoyama, T., Fukushige, S., Soeda, E., Hoshi, M., Hayashi, Y., Sunamura, M. et al. (1998) Genomic analysis of DUSP6, a dual specificity MAP kinase phosphatase, in pancreatic cancer. Cytogenet. Cell Genet. 82, 156–159
    Fu, Y.-N., Yeh C.-L., Cheng, H. H.-Y., Yang, C.-H., Tsai, S.-F., Huang, S.-F., Chen, Y.-R. (2008) EGFR mutants found in non-small cell lung cancer show different levels of sensitivity to suppression of Src: implications in targeting therapy. Oncogene, 27, 957-965
    Geymonat, M., Jensen, S. and Johnston, L. H. (2002) Mitotic exit: the Cdc14 double cross. Curr. Biol. 12, R482–R484
    Hoornaert, I., Marynen, P., Goris, J., Sciot, R. and Baens, M. (2003) MAPK phosphatase DUSP16/MKP-7, a candidate tumor suppressor for chromosome region 12p12-13, reduces BCR-ABL-induced transformation. Oncogene 22, 7728–7736
    Huang S-F, Liu H-P, Li L-H, Ku Y-C, Fu Y-N, Tsai H-Y et al. (2004). High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancer related to gefitinib responsiveness in Taiwan. Clin Cancer Res 10, 8195–8203
    Iliakis, G., Wang, Y., Guan, J. and Wang, H. (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22, 5834–5847
    Ishibashi, T., Bottaro, D.P., Michieli, P., Kelley, C.A., Aaronson, S.A. (1992) Expression cloning of a human dual-specificity phosphatase. Biochem. J. 89, 12170– 12174
    Ishizawar R, Parsons SJ. (2004). c-Src and cooperating partners in human cancer. Cancer Cell 6, 209–214
    Keyse, S. M. (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr. Opin. Cell Biol. 12, 186–192
    Kamata, H., Honda, S., Maeda, S., Chang, L., Hirata, H. and Karin, M. (2005) Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661
    Katagiri, C., Masuda, K., Urano, T., Yamashita, K., Araki, Y., Kikuchi, K. and Shima, H. (2005) Phosphorylation of Ser-446 determines stability of MKP-7. J. Biol. Chem. 280, 14716–14722
    Liao, Q., Guo, J., Kleeff, J., Zimmermann, A., Buchler, M. W., Korc, M. and Friess, H. (2003) Down-regulation of the dual-specificity phosphatase MKP-1 suppresses tumorigenicity of pancreatic cancer cells. Gastroenterology 124, 1830–1845
    Marti, F., Krause, A., Post, N.H., Lyddane, C., Dupont, B., Sadelain, M., King, P.D. (2001) Negative-feedback regulation of CD28 costimulation by a novel mitogen-activated protein kinase phosphatase, MKP6. Immunol. J. 166, 197– 206
    Stewart, A. E., Dowd, S., Keyse, S. M. and McDonald, N. Q. (1999) Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Nat. Struct. Biol. 6, 174–181
    Schullerus, D., Herbers, J., Chudek, J., Kanamaru, H. and Kovacs, G. (1997) Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. J. Pathol. 183, 151–155
    Stamos J, Sliwkowski MX, Eigenbrot C. (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277, 46265–46272
    Tonks, N. K. and Neel, B. G. (2001) Combinatorial control of the specificity of protein tyrosine phosphatases. Curr. Opin. Cell Biol. 13, 182–195
    Takagaki, K., Satoh, T., Tanuma, N., Masuda, K., Takekawa, M., Shima, H. and Kikuchi, K. (2004) Characterization of a novel low-molecular-mass dual-specificity phosphatase-3 (LDP-3) that enhances activation of JNK and p38. Biochem. J. 383, 447–455
    Wu, Q., Huang, S., Sun, Y., Gu, S., Lu, F., Dai, J., Yin, G., Sun, L., Zheng, D., Dou, C. et al. (2006) Dual specificity phosphotase 18, interacting with SAPK, dephosphorylates SAPK and inhibits SAPK/JNK signal pathway in vivo. Front. Biosci. 11, 2714–2724
    Wu, Q., Li, Y., Gu, S., Li, N., Zheng, D., Li, D., Zheng, Z., Ji, C., Xie, Y. and Mao, Y. (2004) Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain. Int. J. Biochem. Cell Biol. 36, 1542–1553
    Xu, S., Furukawa, T., Kanai, N., Sunamura, M. and Horii, A. (2005) Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. J. Hum. Genet. 50, 159–167

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE