研究生: |
盧佩琳 Pei-Lin Lu |
---|---|
論文名稱: |
以生物聚合物水膠載體建立角膜內皮細胞層片組織工程之多功能傳輸系統 Biopolymer-Based Hydrogel Carriers as Multifunctional Delivery System in Corneal Endothelial Cell Sheet Engineering |
指導教授: |
薛敬和
Ging-Ho Hsiue |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 185 |
中文關鍵詞: | 生醫材料 、動物明膠 、透明質酸 、交聯 、多功能水膠載體傳輸系統 、人類眼角膜內皮層 、移植 、細胞層片組織工程 、再生醫學 |
外文關鍵詞: | Biopolymers, Gelatin, Hyaluronic acid, Cross-linking, Multifunctional carrier system, Human corneal endothelial cell sheet, Transplantation, Ocular regenerative medicine |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於人類眼角膜內皮細胞在體內具有不會分化生長的特性,正常角膜內皮組織的細胞密度自出生後即不斷減少。當密度低於每平方毫米1000個細胞時,角膜內皮組織的排水生理功能將無法發揮,進而導致角膜水腫混濁及視覺喪失。目前臨床上,全層角膜移植術為治療角膜內皮組織病變的主要方式。然而,捐贈角膜之來源不足與全層角膜移植的術後相關併發症仍是此法應用時必須克服之瓶頸。因此,進行組織工程之人類眼角膜內皮細胞層片移植,以達到受損角膜內皮組織的單層置換乃一種極具潛力的替代方案。本研究之目的即藉由設計功能性生醫材料,以克服細胞層片移植之瓶頸。
由於細胞層片組織相當柔軟易碎,研究首先設計一多功能水膠載體傳輸系統,以進行生醫工程人類眼角膜內皮細胞層片之眼內移植應用。實驗採用不同等電點(5.0或9.0)及分子量(3至100 kDa)的動物明膠為原料,製備水膠載體並接受γ射線照射消毒。藉由機械性質、含水率、分解率與細胞相容性等測試進行各種水膠載體之功能性評估。結果顯示具有等電點5.0及分子量100 kDa的動物明膠最適合作為細胞層片移植治療之水膠載體與發展穩定的眼內傳輸系統。
由於動物明膠來源具有引發牛海綿狀腦病之風險,本研究亦同時進行替代生醫材料的開發。藉由1-乙基-3-(3-二甲氨基丙基)碳二亞胺交聯處理程序,透明質酸水膠將可獲得適當修飾改質。進一步以形態學、機械性質、熱性質、含水率、分解率與細胞相容性等測試評估此材料是否具有作為細胞層片傳輸載體之可行性。本實驗對照組為戊二醛交聯之透明質酸。
在體內試驗方面,本研究以兔子為動物實驗模式,進行生醫工程人類眼角膜內皮細胞層片之眼內移植治療可行性分析。經由臨床觀測與病理組織切片檢視,人類眼角膜內皮細胞層片在體內能夠順利貼覆結合於宿主病變組織上,並有效發揮其細胞特有生理功能。與僅製造眼角膜內皮傷口的對照組相較下,動物經植入細胞層片後,其受損角膜之病態水腫及其澄清度均可獲得大幅改善。此外,兔子眼角膜厚度幾乎恢復至原始狀態,也意謂著植入的細胞層片組織在體內確實能夠展現功能。這些實驗結果指出具有良好結構與功能之生醫工程細胞層片相當適合應用於眼角膜內皮組織修復。
基於上述研究發現,利用感溫性培養界面與多功能水膠載體,以製備及移植生醫工程人類眼角膜內皮細胞層片,能夠建立一套角膜內皮細胞治療之新策略。此外,功能性生醫材料在人類眼角膜內皮細胞層片組織工程及其再生醫學之開發極具潛力。最後,本研究希望此細胞層片新療法未來能有效改善角膜內皮相關病變,並應用於眼組織再生重建與臨床工程。
Human corneal endothelium in vivo demonstrates an age-related decrease in cell density and cannot be compensated due to its limited regenerative capacity. When the cell density is less than a critical level of 1000 cells/mm2, the endothelial monolayer no longer functions, causing corneal edema and loss of visual acuity. Penetrating keratoplasty (PK) is currently the common way to treat corneas that are opacified due to endothelial dysfunction. However, insufficient supplies of donor corneas and several complications associated with PK remain a worldwide problem. Therefore, transplantation of tissue-engineered human corneal endothelial cell (HCEC) sheets to replace damaged corneal endothelium alone is a promising alternative to PK. This work is devoted to overcome the limitations of cell sheet transplantation.
Because of the soft and fragile nature of bioengineered HCEC sheets, we have designed and developed a multifunctional hydrogel carrier system for intraocular delivery of these sheet grafts. The functionality of gamma-sterilized cell carriers made from raw gelatins with a different isoelectric point (IEP = 5.0 and 9.0) and a molecular weight (MW) range from 3 to 100 kDa, was investigated by the determination of mechanical properties, water content, dissolution degree, and cytocompatibility. The results of our study indicate that the gamma-sterilized hydrogel discs consisting of raw gelatins (IEP = 5.0, MW = 100 kDa) are promising candidates as cell sheet carriers for effective corneal endothelial cell transplantation and therapy.
Development of alternative biomaterials to bovine-based gelatin vehicles can potentially eliminate the risk of bovine spongiform encephalopathy. To investigate whether it was appropriate for use as cell sheet delivery vehicles, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) cross-linked hyaluronic acid (HA) hydrogels were studied by determinations of morphological characteristic, mechanical and thermal property, water content, in vitro degradability, and cytocompatibility. Glutaraldehyde (GTA) cross-linked HA samples were used for comparison. It is concluded that EDC can be successfully applied for HA cross-linking to fabricate structurally stable, mechanically reinforced, readily deformable, transparent, and cytocompatible HA hydrogel discs with the potential to be applied as delivery vehicles for corneal endothelial cell therapy.
On the other hand, intraocular implantation in the anterior chamber has received much attention for the determination of the interactions between the immune privileged tissues and biomaterial implants. A novel methodology based on the anterior chamber of rabbit eyes model was developed to evaluate the in vivo biocompatibility of biomaterials in an immune privileged site. The 7-mm-diameter membrane implants made from either a biological tissue material (amniotic membrane, AM group) or a biomedical polymeric material (gelatin, GM group) were inserted in rabbit anterior chamber for 36 months and characterized by biomicroscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The noninvasive ophthalmic parameters were scored to provide a quantitative grading system. Our data suggest that the anterior chamber of rabbit eyes model is an efficient method for noninvasively determining the immune privileged tissue/biomaterial interactions.
In the present study, we have demonstrated that the multifunctional carrier system is beneficial for transportation and surgical handling of bioengineered human corneal endothelium. Cell sheet transplantation with biopolymer-based hydrogels can potentially offer a new therapeutic strategy for corneal endothelial cell loss. In addition, a novel methodology based on the anterior chamber of rabbit eyes model has great potential for evaluating the ocular biocompatibility and safety of biomaterial carriers. We hope this work will lead to insights into cell sheet-based therapy for ocular regenerative medicine and will open an exciting new door to the future.
[1] Maurice DM. The structure and transparency of the cornea. J. Physiol. 136, 263-286 (1957).
[2] Joyce NC. Proliferative capacity of the corneal endothelium. Prog. Retin. Eye Res. 22, 359-389 (2003).
[3] Chen KH, Azar D, Joyce NC. Transplantation of adult human corneal endothelium ex vivo: a morphologic study. Cornea 20, 731-737 (2001).
[4] McCulley JP, Maurice DM, Schwartz BD. Corneal endothelial transplantation. Ophthalmology 87, 194-201 (1980).
[5] Lange TM, Wood TO, McLaughlin BJ. Corneal endothelial cell transplantation using Descemet’s membrane as a carrier. J. Cataract. Refract. Surg. 19, 232-235 (1993).
[6] Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ, Kinoshita S. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest. Ophthalmol. Vis. Sci. 45, 800-806 (2004).
[7] Jumblatt MM, Maurice DM, Schwartz BD. A gelatin membrane substrate for the transplantation of tissue cultured cells. Transplantation 29, 498-499 (1980).
[8] Insler MS, Lopez JG. Microcarrier cell culture of neonatal human corneal endothelium. Curr. Eye Res. 9, 23-30 (1990).
[9] Mohay J, Lange TM, Soltau JB, Wood TO, McLaughlin BJ. Transplantation of corneal endothelial cells using a cell carrier device. Cornea 13, 173-182 (1994).
[10] Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, Hattori S, Irie S, Miyata K, Araie M, Amano S. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest. Ophthalmol. Vis. Sci. 45, 2992-2997 (2004).
[11] Hsiue GH, Lai JY, Chen KH, Hsu WM. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation 81, 473-476 (2006).
[12] Rücker M, Laschke MW, Junker D, Carvalho C, Schramm A, Mülhaupt R, Gellrich NC, Menger MD. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 27, 5027-5038 (2006).
[13] Fournier E, Passirani C, Montero-Menei CN, Benoit JP. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials 24, 3311-3331 (2003).
[14] Lai JY, Lu PL, Chen KH, Tabata Y, Hsiue GH. Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy. Biomacromolecules 7, 1836-1844 (2006).
[15] Yasukawa T, Ogura Y, Sakurai E, Tabata Y, Kimura H. Intraocular sustained drug delivery using implantable polymeric devices. Adv. Drug. Deliv. Rev. 57, 2033-2046 (2005).
[16] Hashizoe M, Ogura Y, Takanashi T, Kunou N, Honda Y, Ikada Y. Biodegradable polymeric device for sustained intravitreal release of ganciclovir in rabbits. Curr. Eye Res. 16, 633-639 (1997).
[17] Hsiue GH, Lai JY, Lin PK. Absorbable sandwich-like membrane for retinal-sheet transplantation. J. Biomed. Mater. Res. 61, 19-25 (2002).
[18] Yoshida M, Asano M, Kaetsu I, Imai K, Mashimo T, Yuasa H, Yamanaka H, Kawaharada U, Suzuki K. Studies of the slow releasing of testosterone from radiation-polymerized testicular prostheses implanted subcutaneously in the back of castrated rabbits. Biomaterials 8, 124-128 (1987).
[19] Uzzo RG, Lemack GE, Morrissey KP, Goldstein M. The effects of mesh bioprosthesis on the spermatic cord structures: a preliminary report in a canine model. J. Urol. 161, 1344-1349 (1999).
[20] Tsapanos VS, Stathopoulou LP, Papathanassopoulou VS, Tzingounis VA. The role of Seprafilm™ bioresorbable membrane in the prevention and therapy of endometrial synechiae. J. Biomed. Mater. Res. 63, 10-14 (2002).
[21] Nicita G, Li Marzi V, Filocamo MT, Dattolo E, Marzocco M, Paoletti MC, Villari D. Uterus-sparing vaginal surgery of genitourinary prolapse employing biocompatible material. Urol Int. 75, 314-318 (2005).
[22] Suzuki K, Saito J, Yanai R, Yamada N, Chikama T, Seki K, Nishida T. Cell-matrix and cell-cell interactions during corneal epithelial wound healing. Prog. Retin. Eye Res. 22, 113-133 (2003).
[23] Berman ER. In: Biochemistry of the Eye (Berman ER, ed.), Plenum Press, New York and London, p. 89-150 (1991).
[24] Daxer A, Misof K, Grabner B, Ettl A, Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest. Ophthalmol. Vis. Sci. 39, 644-648 (1998).
[25] Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation. Exp. Eye Res. 78, 573-578 (2004).
[26] Waring GO III, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 89, 531-590 (1982).
[27] Joyce NC, Harris DL, Zieske JD. Mitotic inhibition of corneal endothelium in neonatal rats. Invest. Ophthalmol. Vis. Sci. 39, 2572-2583 (1998).
[28] Iwamoto T, Smelser GK. Electron microscopy of the human corneal endothelium with reference to transport mechanisms. Invest. Ophthalmol. 4, 270-284 (1965).
[29] Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest. Ophthalmol. Vis. Sci. 25, 312-322 (1984).
[30] Chung EH, Hutcheon AEK, Joyce NC, Zieske JD. Synchronization of the G1/S transition in response to corneal debridement. Invest. Ophthalmol. Vis. Sci. 40, 1952-1958 (1999).
[31] Joyce NC, Meklir B, Neufeld AH. In vitro pharmacologic separation of corneal endothelial migration and spreading responses. Invest. Ophthalmol. Vis. Sci. 31, 1816-1826 (1990).
[32] Honda H, Ogita Y, Higuchi S, Kani K. Cell movements in a living mammalian tissue: long-term observation of individual cells in wounded corneal endothelia of cats. J. Morphol. 174, 25-39 (1982).
[33] McCartney MD, Robertson DP, Wood TO, McLaughlin BJ. ATPase pump site density in human dysfunctional corneal endothelium. Invest. Ophthalmol. Vis. Sci. 28, 1955-1962 (1987).
[34] Van Horn DL, Hyndiuk RA. Endothelial wound repair in primate cornea. Exp. Eye Res. 21, 113-124 (1975).
[35] Insler MS, Lopez JG. Extended incubation times improve corneal endothelial cell transplantation success. Invest. Ophthalmol. Vis. Sci. 32, 1828-1836 (1991).
[36] Insler MS, Lopez JG. Heterologous transplantation versus enhancement of human corneal endothelium. Cornea 10, 136-148 (1991).
[37] Insler MS, Cooper HD, Caldwell DR. Analysis of corneal thickness and endothelial cell density in pseudophakic and aphakic patients undergoing penetrating keratoplasty. Arch. Ophthalmol. 103, 390-393 (1985).
[38] Senoo T, Joyce NC. Cell cycle kinetics in corneal endothelium from old and young donors. Invest. Ophthalmol. Vis. Sci. 41, 660-667 (2000).
[39] Stocker FW, Eiring A, Georgiade R, Georgiade N. A tissue culture technique for growing corneal epithelial, stromal, and endothelial tissues separately. Am. J. Ophthalmol. 46, 294-298 (1958).
[40] Maurice D, Perlman M. Permanent destruction of the corneal endothelium in rabbits. Invest. Ophthalmol. Vis. Sci. 16, 646-649 (1977).
[41] Jumblatt MM, Maurice DM, McCulley JP. Transplantation of tissue-cultured corneal endothelium. Invest. Ophthalmol. Vis. Sci. 17, 1135-1141 (1978).
[42] Joo CK, Green WR, Pepose JS, Fleming TP. Repopulation of denuded murine Descemet’s membrane with life-extended murine corneal endothelial cells as a model for corneal cell transplantation. Graefes Arch. Clin. Exp. Ophthalmol. 238, 174-180 (2000).
[43] Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical implications for human studies. Proc. Natl. Acad. Sci. U. S. A. 76, 464-468 (1979).
[44] Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to species with nonregenerative endothelium. The cat as an experimental model. Arch. Ophthalmol. 97, 2163-2169 (1979).
[45] Alvarado JA, Gospodarowicz D, Greenburg G. Corneal endothelial replacement. I. In vitro formation of an endothelial monolayer. Invest. Ophthalmol. Vis. Sci. 21, 300-316 (1981).
[46] Insler MS, Lopez JG. Transplantation of cultured human neonatal corneal endothelium. Curr. Eye Res. 5, 967-972 (1986).
[47] Mimura T, Amano S, Usui T, Araie M, Ono K, Akihiro H, Yokoo S, Yamagami S. Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. Exp. Eye Res. 79, 231-237 (2004).
[48] Langer R, Vacanti JP. Tissue engineering. Science 260, 920-926 (1993).
[49] Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NLC, Hakim M, Song Y, Watsky MA. Functional human corneal equivalents constructed from cell lines. Science 286, 2169-2172 (1999).
[50] Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26, 6415-6422 (2005).
[51] Yamato M, Okano T. Cell sheet engineering. Mater. Today 7, 42-47 (2004).
[52] Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90, e40-e48 (2002).
[53] Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 351, 1187-1196 (2004).
[54] Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T. Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps. BJU Int. 93, 1069-1075 (2004).
[55] Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A, Yamato M, Okano T, Ishikawa I. Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J. Periodont. Res. 40, 245-251 (2005).
[56] Shimizu T, Yamato M, Kikuchi A, Okano T. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24, 2309-2316 (2003).
[57] Kwon OH, Kikuchi A, Yamato M, Sakurai Y, Okano T. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J. Biomed. Mater. Res. 50, 82-89 (2000).
[58] Kushida A, Yamato M, Kikuchi A, Okano T. Two-dimensional manipulation of differentiated Madin-Darby canine kidney (MDCK) cell sheets: the noninvasive harvest from temperature-responsive culture dishes and transfer to other surfaces. J. Biomed. Mater. Res. 54, 37-46 (2001).
[59] Shimizu T, Yamato M, Akutsu T, Shibata T, Isoi Y, Kikuchi A, Umezu M, Okano T. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J. Biomed. Mater. Res. 60, 110-117 (2002).
[60] Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77, 379-385 (2004).
[61] Hayashida Y, Nishida K, Yamato M, Watanabe K, Maeda N, Watanabe H, Kikuchi A, Okano T, Tano Y. Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest. Ophthalmol. Vis. Sci. 46, 1632-1639 (2005).
[62] Petersen K, Væggemose Nielsen P, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G. Potential of biobased materials for food packaging. Trends Food Sci. Tech. 10, 52-68 (1999).
[63] Sieminski AL, Gooch KJ. Biomaterial-microvasculature interactions. Biomaterials 21, 2233-2241 (2000).
[64] Peppas N A, Langer R. New challenges in biomaterials. Science 263, 1715-1720 (1994).
[65] Adhikari B, Majumdar S. Polymers in sensor applications. Prog. Polym. Sci. 29, 699-766 (2004).
[66] Holland SJ, Tighe BJ, Gould PL. Polymers for biodegradable medical devices I. The potential of poly-esters as controlled macrolmolecular release systems. J. Control. Release 4, 155-180 (1986).
[67] Fulzele SV, Satturwar PM, Dore AK. Study of the biodegradation and in vivo biocompatibility of novel biomaterials. Eur. J. Pharm. Sci. 20, 53-61 (2003).
[68] Hasirci V, Lewandrowski K, Gresser JD, Wise DL, Trantolo DJ. Versatility of biodegradable biopolymers: degradability and an in vivo application. J. Biotechnol. 86, 135-150 (2001).
[69] Sawhney A S, Pathak CP, Hubbell JA. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules 26, 581-587 (1993).
[70] Buisson P, Quignard F. Polysaccharides: natural polymeric supports for aqueous phase catalysts in allylic substitution reactions. Aust. J. Chem. 55, 73-78 (2002).
[71] Huang K, Xue L, Hu YC, Huang MY, Jiang YY. Catalytic behaviors of silica-supported starch-polysulfosiloxane-Pt complexes in asymmetric hydrogenation of 4-methyl-2-pentanone. React. Funct. Polym. 50, 199-203 (2002).
[72] Zhang X, Geng Y, Han B, Ying MY, Huang MY, Jiang YY. Asymmetric hydrogenation of ketones catalyzed by zeolite-supported gelatin Fe-complex. Polym. Adv. Technol. 12, 642-646 (2001).
[73] Wei WL, Zhu HY, Zhao CL, Huang MY, Jiang YY. Asymmetric hydrogenation of furfuryl alcohol catalyzed by a biopolymer-metal complex, silica-supported alginic acid-amino acid-Pt complex. React. Funct. Polym. 59, 33-39 (2004).
[74] Huang K, Hu J, Huang MY, Jiang YY. Asymmetric hydrogenation of o-cresol and m-cresol catalyzed by silica-supported Methylcellulose-L-alanine–Pd complex. Polym. Adv. Technol. 12, 711-715 (2001).
[75] Liu HW, Xin F, Wu LM, Huang MY, Jiang YY. Catalytic behavior of silica-supported methylcellulose-oxalic acid–Pt complex in asymmetric hydrogenation of 2-butanone and itaconic acid. Polym. Adv. Technol. 13, 210-215 (2002).
[76] Chiessi E, Pispisa B. Polymer-supported catalysis: oxidation of catecholamines by Fe(III) and Cu(II) complexes immobilized to chitosan. J. Mol. Catal. 87, 177-194 (1994).
[77] Quignard F, Choplin A, Domard A. Chitosan: a natural polymeric support of catalysis for the synthesis of fine chemicals. Langmuir 16, 9106-9109 (2000).
[78] Felix G. Regioselectively modified polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J. Chromatogr. A 906, 171-184 (2001).
[79] Malinowska I, Ro´zylo´ JK. Separation of optical isomers of amino acids on modified chitin and chitosan layers. Biomed. Chromatogr. 11, 272-275 (1997).
[80] Burdick JA, Frankel D, Dernell WS, Anseth KS. An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect. Biomaterials 24, 1613-1620 (2003).
[81] Murdan S. Electro-responsive drug delivery from hydrogels. J. Control. Release 92, 1-17 (2003).
[82] Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23, 4315-4323 (2002).
[83] Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat. Biotechnol. 20, 602-606 (2002).
[84] Lee JW, Gardella JA Jr. Surface perspectives in the biomedical applications of poly(α-hydroxy acid)s and their associated copolymers. Anal. Bioanal. Chem. 373, 526-537 (2002).
[85] Grayson ACR, Shawgo RS, Li Y, Cima MJ. Electronic MEMS for triggered delivery. Adv. Drug Deliv. Rev. 56, 173-184 (2004).
[86] Sershen S, West J. Implantable, polymeric systems for modulated drug delivery. Adv. Drug Deliv. Rev. 54, 1225-1235 (2002).
[87] Wnek GE. In: Handbook of conducting polymers (Skotheim TA, ed.), Marcel Dekker, New York, p. 205-212 (1986).
[88] Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354 (Suppl), 32-34 (1999).
[89] Bhatia SN, Chen CS. Tissue engineering at the micro-scale. Biomed. Microdevices 2, 131-144 (1999).
[90] Shin H, Seongbong J, Antonios GM. Biomimetic materials for tissue engineering. Biomaterials 24, 4353-4364 (2003).
[91] Francis Suh JK, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review, Biomaterials 21, 2589-2598 (2000).
[92] Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracelluar matrix materials. Biomaterials 20, 45-53 (1999).
[93] Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24, 2363-2378 (2003).
[94] Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 7, 557-572 (2001).
[95] Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169-1185 (2002).
[96] Hutmacher DW, Schantz JT, Zein I, Ng KW, Tan KC, Teoh SH. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55, 203-216 (2001).
[97] Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 21, 2475-2490 (2000).
[98] Ibim SEM, Ambrosio AMA, Kwon MS, El-Amin SF, Allcock HR, Laurencin CT. Novel polyphosphazene/poly(lactide-co-glycolide) blends: miscibility and degradation studies. Biomaterials 18, 1565-1569 (1997).
[99] Ikada Y, Tabata Y, Protein release from gelatin matrices. Adv. Drug. Deliv. Rev. 31, 287-301(1998).
[100] Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 21, 489-499 (2000).
[101] Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26, 3941-3951 (2005).
[102] Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J. Biomater. Sci., Polym. Ed. 12, 77-88 (2001).
[103] Kuijpers AJ, Van Wachem PB, Van Luyn MJ , Plantinga JA, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J. In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron. J. Biomed. Mater. Res. 51, 136-145 (2000).
[104] Yao CH, Liu BS, Hsu SH, Chen YS, Tsai CC. Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J. Biomed. Mater. Res. 69A, 709-717 (2004).
[105] Kuijpers AJ, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J. Cross-linking and characterisation of gelatin matrices for biomedical applications. J. Biomater. Sci., Polym. Ed. 11, 225-243 (2000).
[106] Mao JS, Cui YL, Wang XH, Sun Y, Yin YJ, Zhao HM, Yao KD. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials 25, 3973-3981 (2004).
[107] Fukunaka Y, Iwanaga K, Morimoto K, Kakemi M, Tabata Y. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J. Control. Release 80, 333-343 (2002).
[108] Tabata Y, Hijikata S, Ikada Y, Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J. Control. Release 31, 189-199 (1994).
[109] Tabata Y, Nagano A, Ikada Y. Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng. 5, 127-138 (1999).
[110] Ozeki M, Tabata Y. In vivo promoted growth of mice hair follicles by the controlled release of growth factors. Biomaterials 24, 2387-2394 (2003).
[111] Yamamoto M, Takahashi Y, Tabata Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24, 4375-4383 (2003).
[112] Kuijpers AJ, Engbers GH, Van Wachem PB, Krijgsveld J, Zaat SA, Dankert J, Feijen J. Controlled delivery of antibacterial proteins from biodegradable matrices. J. Control. Release 53, 235-247 (1998).
[113] Kang HW, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20, 1339-1344 (1999).
[114] Tabata Y, Hijikata S, Muniruzzaman M, Ikada Y. Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J. Biomater. Sci., Polym. Ed. 10, 79-94 (1999).
[115] Iwanaga K, Yabuta T, Kakemi M, Morimoto K, Tabata Y, Ikada Y. Usefulness of microspheres composed of gelatin with various cross-linking density. J. Microencapsul 20, 767-776 (2003).
[116] Kushibiki T, Matsumoto K, Nakamura T, Tabata Y. Suppression of the progress of disseminated pancreatic cancer cells by NK4 plasmid DNA released from cationized gelatin microspheres. Pharm. Res. 21, 1109-1118 (2004).
[117] Meyer K, Palmer JW. The polysaccharide of the vitreous humor. J. Biol. Chem. 107, 629-634 (1934).
[118] Vercruysse KP, Prestwich GD. Hyaluronate derivatives in drug delivery. Crit. Rev. Ther. Carrier Syst. 15, 513-555 (1998).
[119] Longaker MT, Adzick NS. The biology and therapeutic applications of fetal wound healing. Clin. Mater. 8, 223-227 (1991).
[120] Johns DB, Rodgers KE, Donahue WD, Kiorpes TC, diZerega GS. Reduction of adhesion formation by postoperative administration of ionically cross-linked hyaluronic acid. Fertil. Steril. 68, 37-42 (1997).
[121] Duranti F, Salti G, Bovani B, Calandra M, Rosati ML. Injectable hyaluronic acid gel for soft tissue augmentation. A clinical and histological study. Dermatol. Surg. 24, 1317-1325 (1998).
[122] Bell E. Strategy for the selection of scaffolds for tissue engineering. Tissue Eng. 1, 163-179 (1995).
[123] Rastrelli A, Beccaro M, Biviano F, Calderini G, Pastorello A. Hyaluronic acid esters, a new class of semisynthetic biopolymers: chemical and physico-chemical properties. Clin. Implant Mater. 9, 199-205 (1990).
[124] Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19, 2101-2127 (1998).
[125] Balazs EA, Bland PA, Denlinger JL, Goldman AI, Larsen NE, Leshchiner EA, Leshchiner A, Morales B. Matrix engineering. Blood Coagul Fibrinolysis 2, 173-178 (1991).
[126] Yui N, Okano T, Sakurai Y. Inflammation responsive degradation of crosslinked hyaluronic acid gels. J. Control. Release 22, 105-116 (1992).
[127] Laurent TC, Hellsing K, Gelotte B. Crosslinked gels of hyaluronic acid. Acta. Chem. Scand. 18, 274-275 (1964).
[128] Tomihata K, Ikada Y. Crosslinking of hyaluronic acid with glutaraldehyde. J. Polym. Sci., A, Polym. Chem. 35, 3553-3559 (1997).
[129] Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J. Biomed. Mater. Res. 47, 152-169 (1999).
[130] Tomihata K, Ikada Y. Crosslinking of hyaluronic acid with water-soluble carbodiimide. J. Biomed. Mater. Res. 37, 243-251 (1997).
[131] Streilein JW. Regional immunity and ocular immune privilege. Chem. Immunol. 73, 11-38 (1999).
[132] Medawar PB. Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58-69 (1948).
[133] Streilein JW, Ma N, Wenkel H, Ng TF, Zamiri P. Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vision Res. 42, 487-95 (2002).
[134] Medawar PB. A second study of the behavior and fate of skin homografts in rabbits. J. Anat. London 79, 157-76 (1945).
[135] Van Dooremall JC. Die Entwicklung der in fremden Grund versetzten lebenden Gewebe. Albrecht. Van Graefes Arch. Ophthalmol. 19, 358-373 (1873).
[136] Barker CF, Billingham RE. Immunologically privileged sites. Adv. Immunol. 25, 1-54 (1977).
[137] Niederkorn J, Streilein JW, Shadduck JA. Deviant immune responses to allogeneic tumors injected intracamerally and subcutaneously in mice. Invest. Ophthalmol. Vis. Sci. 20, 355-363 (1980).
[138] Tompsett E, Abi-Hanna D, Wakefield D. Immunological privilege in the eye: a review. Curr. Eye Res. 9, 1141-1150 (1990).
[139] Streilein JW. Unraveling immune privilege. Science 270, 1158-1159 (1995).
[140] Kaplan HJ, Stevens TR, Streilein JW. Transplantation immunology of the anterior chamber of the eye. J. Immunol. 115, 800-804 (1975).
[141] Jiang LQ, Streilein JW. Immunologic privilege evoked by histoincompatible intracameral retinal transplants. Reg. Immunol. 3, 121-130 (1991).
[142] Jiang LW, Jorquera M, Streilein JW. Immunologic consequences of intraocular implantation of retinal pigment epithelial allografts. Exp. Eye Res. 58, 719-728 (1994).
[143] Niederkorn JY, Streilein JW. Immunogenetic basis for immunologic privilege in the anterior chamber of the eye. Immunogenetics 13, 227-236 (1981).
[144] Jiang LQ, Streilein JW. Immune privilege extended to allogeneic tumor cells in the vitreous cavity. Invest. Ophthalmol. Vis. Sci. 32, 224-228 (1990).
[145] Wenkel H, Streilein JW. Analysis of immune deviation elicited by antigens injected into the subretinal space. Invest. Ophthalmol. Vis. Sci. 39, 1823-1834 (1998).
[146] Hori J, Streilein JW. Corneal tissues inherently possess immune privilege due in part to constitutive expression of Fas ligand. Invest. Ophthalmol. Vis. Sci. 39, S455 (1998).
[147] Peyman GA, Ganiban GJ. Delivery systems for intraocular routes. Adv. Drug. Deliv. Rev. 16, 107-123 (1995).
[148] Merkli A, Tabatabay C, Gurny R, Heller J. Biodegradable polymers for the controlled release of ocular drugs. Prog. Polym. Sci. 23, 563-580 (1998).
[149] Yasukawa T, Kimura H, Tabata Y, Ogura Y. Biodegradable scleral plugs for vitreoretinal drug delivery. Adv. Drug. Deliv. Rev. 52, 25-36 (2001).
[150] Miyamoto H, Ogura Y, Hashizoe M, Kunou N, Honda Y, Ikada Y. Biodegradable scleral implant for intravitreal controlled release of fluconazole. Curr. Eye Res. 16, 930-935 (1997).
[151] Edlund U, Albertsson AC, Singh SK, Fogelberg I, Lundgren BO. Sterilization, storage stability and in vivo biocompatibility of poly(trimethylene carbonate)/poly(adipic anhydride) blends. Biomaterials 21, 945-955 (2000).
[152] Schmaljohann D, Oswald J, Jørgensen B, Nitschke M, Beyerlein D, Werner C. Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4, 1733-1739 (2003).
[153] Pan YV, Wesley RA, Luginbuhl R, Denton DD, Ratner BD. Plasma polymerized N-isopropylacrylamide: synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2, 32-36 (2001).
[154] Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T. Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5, 505-510 (2004).
[155] Demetriou AA, Whiting JF, Feldman D, Levenson SM, Chowdhury NR, Moscioni AD, Kram M, Chowdhury JR. Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes. Science 233, 1190-1192 (1986).
[156] Lu L, Yaszemski MJ, Mikos AG. Retinal pigment epithelium engineering using synthetic biodegradable polymers. Biomaterials 22, 3345-3355 (2001).
[157] Hirose M, Kwon OH, Yamato M, Kikuchi A, Okano T. Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules 1, 377-381 (2000).
[158] Chiellini E, Cinelli P, Grillo Fernandes E, Kenawy ERS, Lazzeri A. Gelatin-based blends and composites. Morphological and thermal mechanical characterization. Biomacromolecules 2, 806-811 (2001).
[159] Okamoto T, Yamamoto Y, Gotoh M, Huang CL, Nakamura T, Shimizu Y, Tabata Y, Yokomise H. Slow release of bone morphogenetic protein 2 from a gelatin sponge to promote regeneration of tracheal cartilage in a canine model. J. Thorac. Cardiovasc. Surg. 127, 329-334 (2004).
[160] Hokugo A, Ozeki M, Kawakami O, Sugimoto K, Mushimoto K, Morita S, Tabata Y. Augmented bone regeneration activity of platelet-rich plasma by biodegradable gelatin hydrogel. Tissue Eng. 11, 1224-1233 (2005).
[161] Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 31, 287-301 (1998).
[162] Morimoto K, Chono S, Kosai T, Seki T, Tabata Y. Design of novel injectable cationic microspheres based on aminated gelatin for prolonged insulin action. J. Pharm. Pharmacol. 57, 839-844 (2005).
[163] Kushibiki T, Matsumoto K, Nakamura T, Tabata Y. Suppression of tumor metastasis by NK4 plasmid DNA released from cationized gelatin. Gene Ther. 11, 1205-1214 (2004).
[164] Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26, 7095-7103 (2005).
[165] Miyoshi M, Kawazoe T, Igawa HH, Tabata Y, Ikada Y, Suzuki S. Effects of bFGF incorporated into a gelatin sheet on wound healing. J. Biomater. Sci.-Polym. Ed. 16, 893-907 (2005).
[166] Taira M, Furuuchi H, Saitoh S, Sugiyama Y, Sekiyama S, Araki Y, Tabata Y. Bio-sorption of acidic gelatine hydro-gels implanted in the back tissues of Fisher’s rats. J. Oral Rehabil. 32, 382-387 (2005).
[167] Zekorn D. Intravascular retention, dispersal, excretion and break-down of gelatin plasma substitutes. Bibl. Haematol. 33, 131-140 (1969).
[168] Guidoin R, Marceau D, Rao TJ, King M, Merhi Y, Roy PE, Martin L, Duval M. In vitro and in vivo characterization of an impervious polyester arterial prosthesis: the Gelseal Triaxial® graft. Biomaterials 8, 433-441 (1987).
[169] Otani Y, Tabata Y, Ikada Y. Hemostatic capability of rapidly curable glues from gelatin, poly(L-glutamic acid), and carbodiimide. Biomaterials 19, 2091-2098 (1998).
[170] Tabata Y, Uno K, Yamaoka T, Ikada Y, Muramatsu S. Effects of recombinant α-interferon-gelatin conjugate on in vivo murine tumor cell growth. Cancer Res. 51, 5532-5538 (1991).
[171] Kushibiki T, Matsuoka H, Tabata Y. Synthesis and physical characterization of poly(ethylene glycol)-gelatin conjugates. Biomacromolecules 5, 202-208 (2004).
[172] Choksakulnimitr S, Masuda S, Tokuda H, Takakura Y, Hashida M. In vitro cytotoxicity of macromolecules in different cell culture systems. J. Control. Release 34, 233-241 (1995).
[173] Chen KH, Hsu WM, Chiang CC, Li YS. Transforming growth factor-β2 inhibition of corneal endothelial proliferation mediated by prostaglandin. Curr. Eye Res. 26, 363-370 (2003).
[174] Harris DL, Joyce NC. Transforming growth factor-β suppresses proliferation of rabbit corneal endothelial cells in vitro. J. Interferon Cytokine Res. 19, 327-334 (1999).
[175] Fischbach C, Tessmar J, Lucke A, Schnell E, Schmeer G, Blunk T, Göpferich A. Does UV irradiation affect polymer properties relevant to tissue engineering? Surf. Sci. 491, 333-345 (2001).
[176] Bigi A, Panzavolta S, Rubini K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials 25, 5675-5680 (2004).
[177] Katz EP, Li ST. The intermolecular space of reconstituted collagen fibrils. J. Mol. Biol. 73, 351-369 (1973).
[178] Trudel J, Massia SP. Assessment of the cytotoxicity of photocrosslinked dextran and hyaluronan-based hydrogels to vascular smooth muscle cells. Biomaterials 23, 3299-3307 (2002).
[179] Carlson KH, Bourne WM, Brubaker RF. Effect of long-term contact lens wear on corneal endothelial cell morphology and function. Invest. Ophthalmol. Vis. Sci. 29, 185-193 (1988).
[180] Malchiodi-Albedi F, Morgillo A, Formisano G, Paradisi S, Perilli R, Scalzo GC, Scorcia G, Caiazza S. Biocompatibility assessment of silicone oil and perfluorocarbon liquids used in retinal reattachment surgery in rat retinal cultures. J. Biomed. Mater. Res. 60, 548-555 (2002).
[181] Sobottka Ventura AC, Böhnke M. Pentoxifylline influences the autocrine function of organ cultured donor corneas and enhances endothelial cell survival. Br. J. Ophthalmol. 85, 1110-1114 (2001).
[182] Lee SD, Hsiue GH, Kao CY, Chang PCT. Artificial cornea: surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge. Biomaterials 17, 587-595 (1996).
[183] Chirila TV. An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials 22, 3311-3317 (2001).
[184] Yammine P, Pavon-Djavid G, Helary G, Migonney V. Surface modification of silicone intraocular implants to inhibit cell proliferation Biomacromolecules 6, 2630-2637 (2005).
[185] Yao K, Huang XD, Huang XJ, Xu ZK. Improvement of the surface biocompatibility of silicone intraocular lens by the plasma-induced tethering of phospholipid moieties. J. Biomed. Mater. Res. 78A, 684-692 (2006).
[186] Vijayasekaran S, Chirila TV, Hong Y, Tahija SG, Dalton PD, Constable IJ, McAllister IL. Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: histopathological evaluation in the animal eye. J. Biomater. Sci., Polym. Ed. 7, 685-696 (1996).
[187] Suri S, Banerjee R. In vitro evaluation of in situ gels as short term vitreous substitutes. J. Biomed. Mater. Res. 79A, 650-664 (2006).
[188] Hsiue GH, Guu JA, Cheng CC. Poly(2-hydroxyl.mathacrylate) film as a drug delivery system for pilocarpine. Biomaterials 13, 1763-1769 (2001).
[189] Hsiue GH, Hsu SH, Yang CC, Lee SH, Yang IK. Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermo-sensitive poly-N-Isopropylacrylamide. Biomaterials 23, 457-462 (2002).
[190] Krishna Y, Sheridan CM, Kent DL, Grierson I, Williams RL. Polydimethylsiloxane as a substrate for retinal pigment epithelial cell growth. J. Biomed. Mater. Res. 80A, 669-678 (2007).
[191] Acosta AC, Espana EM, Yamamoto H, Davis S, Pinchuk L, Weber BA, Orozco M, Dubovy S, Fantes F, Parel JM. A newly designed glaucoma drainage implant made of poly(styrene-b-isobutylene-b-styrene): biocompatibility and function in normal rabbit eyes. Arch. Ophthalmol. 124, 1742-1749 (2006).
[192] Lai JY, Chen KH, Hsu WM, Hsiue GH, Lee YH. (2006) Bioengineered human corneal endothelium for transplantation. Arch. Ophthalmol. 124, 1441-1448 (2006).
[193] Takezawa T, Mori Y, Yoshizato K. Cell culture on a thermo-responsive polymer surface. Bio/Technology 8, 854-856 (1990).
[194] Ohya S, Matsuda T. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. J. Biomater. Sci., Polym. Ed. 16, 809-27 (2005).
[195] Emregul E, Sungur S, Akbulut U. Immobilization of glucose oxidase onto gelatin for biosensor construction. J. Biomater. Sci., Polym. Ed. 16, 505-519 (2005).
[196] Ozeki M, Tabata Y. Affinity evaluation of gelatin for hepatocyte growth factor of different types to design the release carrier. J. Biomater. Sci., Polym. Ed. 17, 139-150 (2006).
[197] Kushibiki T, Tomoshige R, Iwanaga K, Kakemi M, Tabata Y. In vitro transfection of plasmid DNA by cationized gelatin prepared from different amine compounds. J. Biomater. Sci., Polym. Ed. 17, 645-658 (2006).
[198] Moon JS, Jeon HM, Meng W, Akaike T, Kang IK. Morphology and metabolism of hepatocytes microencapsulated with acrylic terpolymer-alginate using gelatin and poly(vinyl alcohol) as extracellular matrices. J. Biomater. Sci., Polym. Ed. 16, 1245-1259 (2005).
[199] Ozeki M, Tabata Y. In vivo degradability of hydrogels prepared from different gelatins by various cross-linking methods. J. Biomater. Sci., Polym. Ed. 16, 549-561(2005).
[200] Kushibiki T, Tabata Y. Preparation of poly(ethylene glycol)-introduced cationized gelatin as a non-viral gene carrier. J. Biomater. Sci., Polym. Ed. 16, 1447-1461 (2005).
[201] Hahn SK, Jelacic S, Maier RV, Stayton PS, Hoffman AS. Anti-inflammatory drug delivery from hyaluronic acid hydrogels. J. Biomater. Sci., Polym. Ed. 15, 1111-1119 (2004).
[202] Tomihata K, Ikada Y. Preparation of cross-linked hyaluronic acid films of low water content. Biomaterials 18, 189-195 (1997).
[203] Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 7, 79-89 (1999).
[204] Koch DD, Liu JF, Glasser DB, Merin LM, Haft E. A comparison of corneal endothelial changes after use of Healon or Viscoat during phacoemulsification. Am. J. Ophthalmol. 115, 188-201 (1993).
[205] Aragona P, Papa V, Micali A, Santocono M, Milazzo G. Long term treatment with sodium hyaluronate-containing artificial tears reduces ocular surface damage in patients with dry eye. Br. J. Ophthalmol. 86, 181-184 (2002).
[206] Nishida T, Nakamura M, Mishima H, Otori T. Hyaluronan stimulates corneal epithelial migration. Exp. Eye Res. 53, 753-758 (1991).
[207] Hu M, Sabelman EE, Tsai C, Tan J, Hentz VR. Improvement of Schwann cell attachment and proliferation on modified hyaluronic acid strands by polylysine. Tissue Eng. 6, 585-593 (2000).
[208] Zhao X. Synthesis and characterization of a novel hyaluronic acid hydrogel. J. Biomater. Sci., Polym. Ed. 17, 419-433 (2006).
[209] Nakajima N, Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug. Chem. 6, 123-130(1995).
[210] Lai JY, Chen KH, Hsu WM, Lee TH, Lin SY. Multiple elements in the deposits of opacified hydroview intraocular lens. Am. J. Ophthalmol. 139, 1123-1125 (2005).
[211] Joyce NC, Joyce SJ, Powell SM, Meklir B. EGF and PGE2: effects on corneal endothelial cell migration and monolayer spreading during wound repair in vitro. Curr. Eye Res. 14, 601-609 (1995).
[212] Ulubayram K, Aksu E, Gurhan SID, Serbetci K, Hasirci N. Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J. Biomater. Sci., Polym. Ed. 13, 1203-1219 (2002).
[213] Kakugo A, Sugimoto S, Shikinaka K, Gong JP, Osada Y. Characteristics of chemically cross-linked myosin gels. J. Biomater. Sci., Polym. Ed.16, 203-218 (2005).
[214] Duan X, Sheardown H. Crosslinking of collagen with dendrimers. J. Biomed. Mater. Res. 75A, 510-518 (2005).
[215] Milella E, Brescia E, Massaro C, Ramires PA. Chemico-physical properties of hyaluronan-based sponges. J. Biomed. Mater. Res. 52, 695-700 (2000).
[216] Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethy1-3 (3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 23, 1205-1212 (2002).
[217] Liu Y, Shu XZ, Prestwich GD. Biocompatibility and stability of disulfide-crosslinked hyaluronan films. Biomaterials 26, 4737-4746 (2005).
[218] Dentini M, Desideri P, Crescenzi V, Yuguchi Y, Urakawa H, Kajiwara K. Synthesis and physicochemical characterization of gellan gels. Macromolecules 34, 1449-1453 (2001).
[219] Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials 27, 4608-4617 (2006).
[220] Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res. 61, 121-130 (2002).
[221] Richert L, Boulmedais F, Lavalle P, Mutterer J, Ferreux E, Decher G, Schaaf P, Voegel J, Picart C. Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules 5, 284-294 (2004).
[222] Holland TA, Bodde EWH, Baggett LS, Tabata Y, Mikos AG, Jansen JA. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J. Biomed. Mater. Res. 75A, 156-167 (2005).
[223] Liu Y, Griffith M, Watsky MA, Forrester JV, Kuffová L, Grant D, Merrett K, Carlsson DJ. Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. Biomacromolecules 7, 1819-1828 (2006).
[224] Li M, Mondrinos MJ, Chen X, Gandhi MR, Ko FK, Lelkes PI. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J. Biomed. Mater. Res. 79A, 963-973 (2006).
[225] Miyagawa S, Sawa Y, Sakakida S, Taketani S, Kondoh H, Memon IA, Imanishi Y, Shimizu T, Okano T, Matsuda H. Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation 80, 1586-1595 (2005).
[226] Sakai S, Mu C, Kawabata K, Hashimoto I, Kawakami K. Biocompatibility of subsieve-size capsules versus conventional-size microcapsules. J. Biomed. Mater. Res. 78A, 394-398 (2006).
[227] Shim WS, Kim SW, Lee DS. Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. Biomacromolecules 7, 1935-1941 (2006).
[228] Lo CL, Lin KM, Huang CK, Hsiue GH. Self-assembly of a micelle structure from graft and diblock copolymers: an example of overcoming the limitations of polyions in drug delivery. Adv. Funct. Mater. 16, 2309-2316 (2006).
[229] Hsiue GH, Chiang HZ, Wang CH, Juang TM. Nonviral gene carriers based on diblock copolymers of poly(2-ethyl-2-oxazoline) and linear polyethylenimine. Bioconjug. Chem. 17, 781-786 (2006).
[230] Zhong Z, Feijen J, Lok MC, Hennink WE, Christensen LV, Yockman JW, Kim YH, Kim SW. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties. Biomacromolecules 6, 3440-3448 (2005).
[231] Kasper FK, Jerkins E, Tanahashi K, Barry MA, Tabata Y, Mikos AG. Characterization of DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in vitro. J. Biomed. Mater. Res. 78A, 823-835 (2006).
[232] Williams DF. Definitions in biomaterials. In: Progress in biomedical engineering (Williams DF, ed.), Elsevier, p. 49-59 (1987).
[233] Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26, 1211-1218 (2005).
[234] Watanabe J, Ishihara K. Cell engineering biointerface focusing on cytocompatibility using phospholipid polymer with an isomeric oligo(lactic acid) segment. Biomacromolecules 6, 1797-1802 (2005).
[235] Sethuraman S, Nair LS, El-Amin S, Farrar R, Nguyen MTN, Singh A, Allcock HR, Greish YE, Brown PW, Laurencin CT. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. J. Biomed. Mater. Res. 77A, 679-687 (2006).
[236] Fournier E, Passirani C, Colin N, Sagodira S, Menei P, Benoit JP, Montero-Menei CN. The brain tissue response to biodegradable poly(methylidene malonate 2.1.2)-based microspheres in the rat. Biomaterials 27, 4963-4974 (2006).
[237] Choi TH, Tseng SCG. In vivo and in vitro demonstration of epithelial cell-induced myofibroblast differentiation of keratocytes and an inhibitory effect by amniotic membrane. Cornea 20, 197-204 (2001).
[238] Fernandes M, Sridhar MS, Sangwan VS, Rao GN. Amniotic membrane transplantation for ocular surface reconstruction. Cornea 24, 643-653 (2005).
[239] Shimazaki J, Aiba M, Goto E, Kato N, Shimmura S, Tsubota K. Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology 109, 1285-1290 (2002).
[240] Wang DY, Hsueh YJ, Yang VC, Chen JK. Propagation and phenotypic preservation of rabbit limbal epithelial cells on amniotic membrane. Invest. Ophthalmol. Vis. Sci. 44, 4698-4704 (2003).
[241] Ventura L, Riul C, Sousa SJF, De Groote JGS, Rosa Filho AB, Oliveira GCD. Corneal astigmatism measuring module for slit lamps. Phys. Med. Biol. 51, 3085-3098 (2006).
[242] Connon CJ, Nakamura T, Quantock AJ, Kinoshita S. The persistence of transplanted amniotic membrane in corneal stroma. Am. J. Ophthalmol. 141, 190-192 (2006).
[243] Foster PJ, Wong JS, Wong E, Chen FG, Machin D, Chew PTK. Accuracy of clinical estimates of intraocular pressure in Chinese eyes. Ophthalmology 107, 1816-1821 (2000).
[244] Setala K. Corneal endothelial cell density after an attack of acute glaucoma. Acta. Ophthalmol. (Copenh) 57, 1004-1013 (1979).
[245] Ehlers N, Hjortdal J. Corneal thickness: measurement and implications. Exp. Eye Res. 78, 543-548 (2004).
[246] Melamed S, Ben-Sira I, Ben-Shaul Y. Corneal endothelial changes under induced intraocular pressure elevation: a scanning and transmission electron microscopic study in rabbits. Br. J. Ophthalmol. 64, 164-169 (1980).