簡易檢索 / 詳目顯示

研究生: 林敬鈞
Lin, Ching-Chun
論文名稱: 低維氧化物及碲化物之電致變色及電阻轉換效應的探討
Electrochromism and Resistive Switching Behaviors of Low Dimensional Oxide and Telluride Nanostructures
指導教授: 陳力俊
Chen, Lih-Juann
口試委員: 鄭晃忠
鄭紹良
許薰丰
葉炳宏
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 88
中文關鍵詞: 奈米線穿透式電子顯微鏡電致變色電阻轉換相變化
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文涵蓋三個低維度的材料系統,從其各自的材料特性中分別去探討與缺陷的關係。
    第一部分為三維氧化鎢奈米線的合成與其電致變色的性質探討。三維的氧化鎢奈米線可透過水平爐管以單一步驟成長在導電的玻璃基板上。合成出的樣品可直接組裝成電致變色的元件。利用三維氧化鎢的結構,我們可以在固態以及液態電解質的元件中都得到良好的電化學性質以及光學可調性。此外,在液態電解質元件中,我們可以得到高著色效率(71.6 C-1 cm2)以及良好的鋰離子擴散係數(1.85×10-10 cm2 s-1 ),奈米線中的氧缺陷被認為是提升電致變色性質的主因。
    第二部份探討彎折氧化錫奈米帶中非對稱氧缺陷所帶來的憶阻效應。透過水平爐管調控氧分壓的合成方式下,可得到高密度非對稱的彎折氧化錫奈米帶。在外壓改變的狀況下,奈米帶成長平面自(200) 轉向(002)平面。利用掃描穿透式電子顯微鏡,可清楚觀察到彎折結構的奈米帶兩端具有非對稱氧缺陷的情況。這樣非對稱的結構可製成元件成功操作超過105個循環。
    第三部份是低溫合成不同型貌及成分的碲化銅奈米結構。透過調控溶液中乙二胺的莫爾體積,可得到不同銅含量的碲化銅奈米結構。從高溫XRD以及即時電子顯微鏡選區繞射圖的分析當中,探討碲化銅奈米線相變化的過程。並且利用光學微影方式定義鎳電極來製造單根奈米線元件,從電流電壓曲線中得到碲化銅奈米線可以在小電壓驅動下產生雙極性電阻轉換的特性,其結果與銅離子擴散有關。


    Contents Abstract III List of Tables VII List of Abbreviations and Acronyms VIII Part I Introduction 1 Chapter 1 Overview 1 1.1 Nanotech 1 1.2 Two Dimensional System 4 1.3 One Dimensional System 5 1.4 Zero Dimensional System 8 Chapter 2 Basic Properties of WO3, SnO2 and Cu2Te 11 2.1 Tungsten Oxide 11 2.2 Tin Dioxide 15 2.3 Copper Telluride 18 Part II Experimental Setup 21 Chapter 3 Experimental Procedures 21 3.1 Substrate Preparation 21 3.2 Furnace Setup 21 3.3 Scanning Electron Microscopy 22 3.4 Sample Preparation for Transmission Electron Microscope (TEM) Observation 22 3.5 Transmission Electron Microscopy 23 3.6 X-ray Diffraction 23 3.7 In-situ X-ray Diffraction 24 3.8 Cyclic Voltammetry 24 3.9 In situ UV-visible Spectroelectrochemistry 24 3.10 Electron Beam Lithography (EBL) 25 3.11 Electrical Property Measurement 25 Part III Results and Discussion 27 Chapter 4 Three Dimensional WO3-x Nanowires for High Coloration Efficiency Electrochromic Device 27 4.1 Motivation 27 4.2 Experimental Procedures 28 4.3 Results and Discussion 31 Chapter 5 Memristive Switching in Asymmetric Kinked SnO2-x/SnO2 Nanobelts 38 5.1 Motivation 38 5.2 Experimental Procedures 39 5.3 Results and Discussion 40 Chapter 6 Low Temperature Synthesis of Copper Telluride Nanostructures: Phase Formation, Growth, and Resistive Switching Properties 49 6.1 Motivation 49 6.2 Experimental Procedures 51 6.3 Results and Discussion 52 Part IV Summary 62 Chapter 7 Summary 62 7.1 Three Dimensional WO3-x Nanowires for High Coloration Efficiency Electrochromic Device 62 7.2 Memristive Switching in Asymmetric Kinked SnO2-x/SnO2 Nanobelts 62 7.3 Low Temperature Synthesis of Copper Telluride Nanostructures: Phase Formation, Growth, and Resistive Switching Properties 63 Chapter 8 Future Prospects 64 8.1 Synthesis and In-Situ Formation of Core/Shell WO3 based NWs on Metal Substrates 64 8.2 Investigation on the Memristive Switching Mechanisms in Asymmetric Kinked SnO2-x/SnO2 NBs by ex-situ TEM Observation 65 8.3 Controlled Growth of Metal Chalcogenide Nanostructures 66 8.4 Synthesis and Characterization of Cu2Te Nanoplates………………….67 References 69

    Chapter 1 Introduction

    1.1 R. P. Feynman, “There’s Plenty of Room at the Bottom,” at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959).
    1.2 M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104, 293-346 (2004).
    1.3 Basic Energy Science (BES), “The scale of Things.” Retrieved May 26, 2006, from http://science.energy.gov/bes/news-and-resources/scale-of-things-chart/
    1.4 W. Lu and C. M. Lieber, “Nanoelectronics from the Bottom Up,“ Nat. Mat. 6, 841-850 (2007).
    1.5 B. O’Regan and M. Gratzel, “A Low Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353, 737-740 (1991).
    1.6 K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A. M. Belcher, “Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes,” Science 312, 885-888 (2006)
    1.7 J. N. Tiwari, R. N. Tiwari and K. S. Kim, “Zero-dimensional, One-dimensional, Two-dimensional and Three-dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices,” Prog. Mat. Sci. 57, 724-803 (2012).
    1.8 D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu and Y. Cui, “Few-Layer Nanoplates of Bi2Se3 and Bi2Te3 with Highly Tunable Chemical Potential,” Nano Lett. 10, 2245-2250 (2010).
    1.9 J. M. Soon, and K. P. Lohz, “Electrochemical Double-Layer Capacitance of MoS2 Nanowall Films,” Electrochem. Solid-State Lett. 10, A250-A254 (2007).
    1.10 C. Ye, Y. Bando, G. Shen, and D. Golberg, “Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets,” J. Phys. Chem. B 110, 15146-15151 (2006).
    1.11 A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nat. Mat. 6, 183-191 (2007).
    1.12 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional Gas of Massless Dirac Fermions in Graphene,” Nature 438, 197-200 (2005).
    1.13 C. Berger et al., “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312, 1191-1196 (2006).
    1.14 C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett. 7, 1003-1009 (2007).
    1.15 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
    1.16 Y. Cui, and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291, 851-853 (2001).
    1.17 M. S. Gudiksen, L. J. Lauhon, J. Wang, D. Smith, and C. M. Lieber, “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature 415, 617-620 (2002).
    1.18 Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire Nanosensors forHighly Sensitive and SelectiveDetection of Biological and Chemical Species,” Science 293, 1289-1292 (2001).
    1.19 Z. L. Wang, and J. H. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science 312, 242-246 (2006).
    1.20 M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P.D. Yang, “Nanowire Dye-sensitized Solar Cells,” Nat. Mater. 4, 455-459 (2005).
    1.21 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar & P. Yang, “Enhanced Thermoelectric Terformance of Rough Silicon Nanowires,” Nature 451, 163-168 (2008).
    1.22 M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials,” Adv. Mat. 19, 1043–1053 (2007).
    1.23 A. M. Morales, and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998).
    1.24 L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. 42, 3031-3034 (2003).
    1.25 N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, J. R. Heath, “Ultrahigh-Density Nanowire Lattices and Circuits,” Science 300, 112-115 (2003).
    1.26 C. J. Murphy and N. R. Jana, “Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires,” Adv. Mat. 14, 80-82 (2002).
    1.27 C. Scho1nenberger, B. M. I. van der Zande, L. G. J. Fokkink, M. Henny, C. Schmid, M. Kru1ger, A. Bachtold, R. Huber, H. Birk, and U. Staufer, „Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology,“ J. Phys. Chem. B 101, 5497-5505 (1997).
    1.28 J. Hu, T. Wang Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    1.29 S. Kodambaka, J. Tersoff, M. C. Reuter, F. M. Ross, “Germanium Nanowire Growth via Simple Vapor Transport,” Science 316, 729-732 (2007).
    1.30 R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89-90 (1964).
    1.31 Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947-1949 (2001).
    1.32 J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B 15, 554-557 (1997).
    1.33 Y. Y. Wu, and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, 605-607 (2000).
    1.34 Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, “Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires,” Chem. Phys. Lett. 357, 314-318 (2002).
    1.35 X. C. Wu, and Y. R. Tao, “Growth of CdS Nanowires by Physical Vapor Deposition,” J. Cryst. Growth 242, 309-312 (2002).
    1.36 C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen “Catalytic Growth and Characterization of Gallium Nitride Nanowires,” J. Am. Chem. Soc. 123, 2791-2798 (2001).
    1.37 Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda, “Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 81, 5177-5179 (2002).
    1.38 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409, 66-69 (2001).
    1.39 P. Yang and C. M. Lieber, “Nanostructured Cigh-Temperature Superconductors: Creation of Strong-Pinning Columnar Defects in Nanorod/Superconductor Composites,“ J. Mat. Res. 12, 2981-2996 (1997).
    1.40 Z. R. Dai, Z. W. Pan and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Fun. Mat. 13, 9-24 (2003).
    1.41 M. Law, J. Goldberger and P. Yang, “Semiconductor Nanowires and Nanotubes,” Annu. Rev. Mater. Res. 34, 83-122 (2004).
    1.42 M. J. Bierman, Y. K. Albert Lau, A. V. Kvit, A. L. Schmitt and S. Jin, “Dislocation-Driven Nanowire growth and Eshelby Twist,“ Science 320, 1060-1063 (2008).
    1.43 K. Tang, Y. Qian, J. Zeng and X. Yang, “Solvothermal Route to Semiconductor Nanowires,“ Adv. Mat. 15, 448-450 (2003).
    1.44 X. Wang and Y. Li, “Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires,” J. AM. CHEM. SOC. 124, 2880-2881 (2002).
    1.45 Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, “Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires,” Nano Lett. 2, 717-720 (2002).
    1.46 M. Tian,, J. Wang, J. Kurtz, T. E. Mallouk, and M. H. W. Chan, “Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism,” Nano Lett. 3, 919-923 (2003).
    1.47 K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisˇic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110, 20865-20871 (2006).
    1.48 C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang and L. J. Chen, “Oriented Growth of Large-Scale Nickel Sulfide Nanowire Arrays via a General Solution Route for Lithium-Ion Battery Cathode Applications,” J. Mater. Chem. 19, 7277-7283 (2009).
    1.49 R. H. Baughman, A. A. Zakhidov, W. A. de Heer, “Carbon Nanotubes—the Route Toward Applications,“ Science 297, 787-792 (2002).
    1.50 S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, 56-58 (1991)
    1.51 S. Iijima, T. Ichihashi, “Single-shell Carbon Nanotubes of 1-nm diameter” Nature 363, 603-605 (1993).
    1.52 D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt-catalysed Growth of Carbon Nanotubes with Single-atomic-layer Walls,” Nature 363, 605-607 (1993).
    1.53 W.C.W. Chan and S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science 281, 2016-2018 (1998).
    1.54 J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke and A. Forchel, “Strong Coupling in a Single Quantum Dot–Semiconductor Microcavity System,“ Nature 432, 197-200 (2004).
    1.55 S. Tarucha et al., “Shell Filling and Spin Effects in a Few Electron Quantum Dot,” Phys. Rev. Lett. 77, 3613-3616 (1996).
    1.56 J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II±VI Semiconductor Quantum Dot±Polymer Composites,” Adv. Mat. 12, 1102-1105 (2000).
    1.57 P. Michler et al. “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282-2285 (2000).
    1.58 A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture,” J. Am. Chem. Soc. 130, 4007-4015 (2008).
    1.59 P. V. Kamat, “Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters,” J. Phys. Chem. C 112, 18737–18753 (2008).
    1.60 X. Michalet et al., “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538-544 (2005).
    1.61 M. R. Sakr, H. W. Jiang, E. Yablonovitch, and E. T. Croke, “Fabrication and Characterization of Electrostatic Si/SiGe Quantum Dots with an Integrated Read-out Channel,” Appl. Phys. Lett. 87, 223104 (2005).
    1.62 M.W. Dashiell et al., “Photoluminescence of Ultrasmall Ge Quantum Dots Grown by Molecular Beam Epitaxy at Low Temperatures,” Appl. Phys. Lett. 80, 1279-1281 (2002).

    Chapter 2 Basic Properties of WO3, SnO2, Cu2Te Nanostructures

    2.1 R. J. D. Tilley, “The Crystal Chemistry of the Higher Tungsten Oxides,” Int. J. of Refractory Metals & Hard Materials 13, 93-109 (1995).
    2.2 E. Salje and K. Viswanathan, “Physical Properties and Phase Transitions WO3,” Acta Cryst. 31, 356-359 (1975).
    2.3 E. Salje, “The Orthorhombic Phase of WO3,” Acta Cryst. 31, 356-359 (1976).
    2.4 E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin, J. Purans, “Raman Study of the Phase Transitions Sequence in Pure WO3 High Temperature and in HxWO3 with Variable Hydrogen Content,” Solid State Ionics 123, 67-74 (1999).
    2.5 H.A.Wriedt, in “Phase Diagrams of Binary Tungsten Alloys” (Edited by S. V. Nagender Nalou and P. Rama Rao) The Indian Institute of Metals, Indian, 1995.
    2.6 K. Viswanathan et. al. “Crystal Structure and Charge Carrier Concentration of W18O49,” Journal of Solid State Chem. 36, 45-51 (1981).
    2.7 M. T. Chang, L. J. Chou, Y. L. Chueh, Y.C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan, and L. J. Chen, “Nitrogen-Doped Tungsten Oxide Nanowires: Low-Temperature Synthesis on Si, and Electrical, Optical, and Field-Emission Properties,” Small 3, 658-664 (2007).
    2.8 D. T. Gillaspie, R.C. Tenent and A. C. Dillon, “Metal-Oxide Films for Electrochromic Applications: Present Technology and Future Directions,” J. Mater. Chem. 20, 9585-9592 (2010).
    2.9 J. R. Platt, “Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field,” J. Chem. Phy. 34, 861-863 (1961).
    2.10 S. K. Deb, “A Novel Electrophotographic System,” Appl. Opt. 8, 192-195 (1969).
    2.11 S. K. Deb, ”Opportunities and Challenges in Science and Technology of WO3 for Electrochromic and Related Applications,” Solar Energy Materials and Solar Cells 92, 245-258 (2008).
    2.12 C. M. Lampert, “Large-Area Smart Glass and Integrated Photovoltaics,” Solar Energy Materials and Solar cells 76, 489-499 (2003).
    2.13 C. G. Granqvist, “Electrochromic Tungsten Oxide Films: Review of Progress: 1993-1998,” Solar Energy Materials and Solar Cells 60, 201-262 (2000).
    2.14 S. H. Lee, H. M. Cheong, J. G. Zhang, A. Mascarenhas, D. K. Benson, and S. K. Deb, “Electrochromic Mechanism in a-WO3-y Thin Films” Appl. Phys. Lett. 74, 242-244 (1999).
    2.15 R. Waser, R. Dittmann, G.Staikov, and K. Szot, “Redox-Based Resistive Switching Memories –Nanoionic Mechanisms, Prospects, and Challenges,“ Adv. Mat. 21, 2632-2663 (2009).
    2.16 D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, “The Missing Memristor Found,“ Nature 453, 80-83 (2008).
    2.17 W. Steinhögl, G. Steinlesberger, M. Perrin, G. Scheinbacher, G. Schindler, M. Traving and M. Engelhardt, “Tungsten Interconnects in the Nano-Scale Regime,“ Microelectonic Engineering 82, 266-272 (2005).
    2.18 C. Kügeler, R. Rosezin, R. Weng, R. Waser, S. Menzel, B. Klopstra and U.Böttger, “Fast Resistive Switching in WO3 Thin Films for Nonvolatile Memory Applications,“ 9th Nanotechnology Conference: IEEE NANO 2009 1102-1105 (2009).
    2.19 S. Lee, J. Lee, J. Park, Y. Choi and K. Yong, “Resistive Switching WOx-Au Core-Shell Nanowires with Unexpected Nonwetting Stability Even when Submerged Under Water,” Adv. Mat. 24, 2418-2423 (2012).
    2.20 Y. L. Song, Y. Liu, Y. L. Wang, M. Wang, X. P. Tian, L. M. Yang, and Y. Y. Lin, “Low Reset Current in Stacked AlOx/WOx Resistive Switching Memory,” IEEE ELECTRON DEVICE LETTERS 32, 1439-1441 (2011).
    2.21 K.G. Godinho, A. Walsh and G. W. Watson, “Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2,” J. Phys. Chem. C 113, 439-448 (2009).
    2.22 M. Batzill, U. Diebold, “The Surface and Materials Science of Tin Oxide,” Prog. Surf. Sci. 79, 47-154 (2005).
    2.23 H. Okamoto, “O-Sn (Oxygen-Tin),” J. Phase Equilibria and Diffusion 27, 202-202 (2006).
    2.24 M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts,” J. Phys. Chem. B 107, 659-663 (2003).
    2.25 Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya et al. “p-Channel Thin-Film Transistor Using p-type Oxide Semiconductor, SnO,” Appl. Phys. Lett. 93, 032113 (2008).
    2.26 A. Kolmakov and M. Moskovits, “Chemical Sensing and Catalyst by One-Dimensional Metal Oxide Nanostructres,” Annu. Rev. Mater. Res. 34, 151-180 (2004).
    2.27 K. Nagashima, T. Yanagida, K. Oka, and T. Kawai, “Unipolar Resistive Switching Characteristics of Room Temperature Grown SnO2 Thin Films,” Appl. Phys. Lett. 94, 242902 (2009).
    2.28 H. Kikuchi, H. Iyetomi and A. Hasegawa, “Insight into the Origin of Superionic Conductivity from Electronic Structure Theory,” J. Phys.: Condens. Matter 10, 11439-11448 (1998).
    2.29 J. Zhou, X. Wu, A. Duda, G. Teeter, S.H. Demtsu, “The Formation of Different Phases of CuxTe and Their Effects on CdTe/CdS Solar Cells,” Thin Solid Films 515, 7364-7369 (2007).
    2.30 N. Vouroutzis, N. Frangis, and C. Manolikas, “The Double Modulation Superstructure of the Room Temperature Stable Phase of Stoichiometric Cu2Te,” Phys. Stat. Sol. (a) 202, 271-280 (2005).
    2.31 A. S. Pashinkin and V. A. Fedorov, “Phase Equilibria in the Cu–Te System,” Inorganic Materials 39, 539-554 (2003).
    2.32 K. Neyvasagam, N. Soundararajan, Ajaysoni, G. S. Okram, and V. Ganesan, “Low-Temperature Electrical Resistivity of Cupric Telluride (CuTe) Thin Films,” P hys. Stat. Sol. (b) 245, 77-81 (2008).
    2.33 D. Ferizović, M. Muñoz, “Optical, Electrical and Structural Properties of Cu2Te Thin Films Deposited by Magnetron Sputtering,” Thin Solid Films 519, 6115-6119 (2011).
    2.34 M. Wuttig, D. Lüsebrink, D. Wamwangl, W. Welnic, M. Gilleβen and R. Dronskowski, “The Role of Vacancies and Local Distortions in the Design of New Phase-Change Materials,” Nat. Mat. 6, 122-128 (2006).
    2.35 S. H. Lee, Y. Jung and R. Agarwal, “Highly Scalable Non-Volatile and Ultra-Low Power Phase-Change Nanowire Memory,” Nat. Nanotech. 2, 626-630 (2007).
    2.36 T. Matsunaga and N. Yamada, “A Study of Highly Symmetrical Crystal Structures, Commonly Seen in High-Speed Phase-Change Materials, Using Synchrotron Radiation,” Jpn. J. Appl. Phys. 41, 1674-1678 (2002).
    2.37 A. H. Edward et al., “Electronic Structure of Intrinsic Defects in Crystalline Germanium Telluride,” PHYSICAL REVIEW B 73, 045210 (2006).

    Chapter 4 Three Dimensional WO3-x Nanowires for High Coloration Efficiency Electrochromic Device

    4.1 A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding and Z. L. Wang, “Ultrasensitive and Highly Selective Gas Sensors Using Three-Dimensional Tungsten Oxide Nanowire Networks,” Appl. Phys. Lett. 88, 203101 (2006).
    4.2 J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, and M. Niederberger, “Template-Free Synthesis and Assembly of Single-Crystalline Tungsten Oxide Nanowires and their Gas-Sensing Properties,“ Angew. Chem. Int. Ed. 45, 261 –265 (2006).
    4.3 X. L. Li, T J. Lou, X. M. Sun, and Y. D. Li, “Highly Sensitive WO3 Hollow-Sphere Gas Sensors,” Inorg. Chem. 43, 5442-5449 (2004).
    4.4 B.Cole, B. Marsen, E. Miller, Y. Yan, B. To, K. Jones, and M. Al-Jassim, “Evaluation of Nitrogen Doping of Tungsten Oxide for Photoelectrochemical Water Splitting,”J. Phys. Chem. C 112, 5213-5220 (2008).
    4.5 D. Chen, L. Gao, A. Yasumori, K. Kuroda, and Y. Sugahara, “Size- and Shape-Controlled Conversion of Tungstate-Based Inorganic–Organic Hybrid Belts to WO3 Nanoplates with High Specific Surface Areas,” Small 4, 1813–1822 (2008).
    4.6 M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan, and L. J. Chen, “Nitrogen-Doped Tungsten Oxide Nanowires: Low-Temperature Synthesis on Si, and Electrical, Optical, and Field-Emission Properties,“ Small 3, 658 – 664 (2007).
    4.7 J. Y. Luo, F. L. Zhao, L. G., Huan J. Chen, J. Zhou, Z. L. Li, S. Z. Deng, and N. S. Xu, “Ultraviolet-Visible Emission from Three-Dimensional WO3−x Nanowire Networks,” Appl. Phys. Lett. 91, 3124-3127 (2007).
    4.8 J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang. “Three-Dimensional Tungsten Oxide Nanowire Networks,” Adv. Mater. 17, 2107-2110 (2005).
    4.9 D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao, and D. Fitzmaurice, “Ultrafast Electrochromic Windows Based on Redox-Chromophore Modified Nanostructured Semiconducting and Conducting Films,” J. Phys. Chem. B. 104, 11449-11459 (2000).
    4.10 X. W. Sun and J. X. Wang, “Fast Switching Electrochromic Display Using a Viologen-Modified ZnO Nanowire Array Electrode,” Nano Lett. 8, 1884-1889 (2008).
    4.11 Y. C. Nah, A. Ghicov, D. Kim, S. Berger, and P. Schmuki, “TiO2#WO3 Composite Nanotubes by Alloy Anodization: Growth and Enhanced Electrochromic Properties,“ J. AM. CHEM. SOC. 130, 16154–16155 (2008).
    4.12 J. Wang, E. Khoo, P. S. Lee, and J. Ma, “Controlled Synthesis of WO3 Nanorods and Their Electrochromic Properties in H2SO4 Electrolyte,” J. Phys. Chem. C 113, 9655–9658 (2009).
    4.13 C.C. Liao et al. “WO3-x Nanowires Based Electrochromic Devices,“ Solar Energy Materials & Solar Cells 90, 1147-1155 (2006).
    4.14 S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, and A. C. Dillon, “CrystallineWO3 Nanoparticles for Highly Improved Electrochromic Applications,” Adv. Mater. 18, 763-766 (2006).
    4.15 F. Wang, C. D. Valentin and G. Pacchioni, “Semiconductor-to-Metal Transition in WO3−x: Nature of the Oxygen Vacancy,” Phys. Rev. B 84, 073103 (2011).
    4.16 R. Chatten, A. V. Chadwick, A. Rougier and P. J. D. Lindan, “The Oxygen Vacancy in Crystal Phases of WO3,“ J. Phys. Chem. B 109, 3146-3156 (2005).
    4.17 D. B. Migas,_ V. L. Shaposhnikov, V. N. Rodin, and V. E. Borisenko, “Tungsten Oxides. I. Effects of Oxygen Vacancies and Doping on Electronic and Optical Properties of Different Phases of WO3,” J. Appl. Phys. 108, 093713 (2010).
    4.18 C. C. Liao, F. R. Chen and J. J. Kai, “Annealing Effect on Electrochromic Properties of Tungsten Oxide Nanowires,” Solar Energy Materials & Solar Cells 91, 1258-1266 (2007).
    4.19 Y. Zhang, Y. Chen, H. Liu, Y. Zhou, R. Li, M. Cai, and X. Sun, “Three-Dimensional Hierarchical Structure of Single Crystalline Tungsten Oxide Nanowires: Construction, Phase Transition, and Voltammetric Behavior,” J. Phys. Chem. C. 113, 1746-1750 (2009).
    4.20 S. K. Deb, ”Opportunities and Challenges in Science and Technology of WO3 for Electrochromic and Related Applications,” Solar Energy Materials and Solar Cells 92, 245-258 (2008).
    4.21 J. E. B. Randles, “A Cathode Ray Polarograph. Part II.-the Current-Voltage Curves,” Trans. Faraday Soc. 44, 327-338 (1948).
    4.22 G. Leftheriotis, S. Papaefthimiou and P. Yianoulis, “Dependence of the Estimated Diffusion Coefficient of LixWO3 Films on the Scan Rate of Cyclic Voltammetry Experiments,” 178, 259-263 (2007).

    Chapter 5 Memristive Switching in Asymmetric Kinked SnO2-x/SnO2 Nanobelts
    5.1 R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mat. 6, 833-840 (2007).
    5.2 K. Shibuya, R. Dittmann, S. Mi, and R. Waser, “Impact of Defect Distribution on Resistive Switching Characteristics of Sr2TiO4 Thin Films,” Adv. Mat. 22, 411-414 (2010).
    5.3 R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories –Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mat. 21, 2632-2663 (2009).
    5.4 A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbe´, Blas Garrido, R. Rizk, and A. J. Kenyon, “Resistive switching in silicon suboxide films,” J. Appl. Phys. 111, 074507 (2012).
    5.5 M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U-In Chung, I.-K. Yoo and K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures,” Nat. Mat. 10, 625-630 (2011).
    5.6 Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart & R. Stanley Williams, “The missing memristor found,” Nature 453, 80-83 (2008).
    5.7 J. J. Yang, M. D. Pickett, XueMa Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nat. Nanotech. 3, 429-433 (2008).
    5.8 M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, J. Hur, S. E. Ahn, M. Chang, Y. B. Kim, U In Chung, C. J. Kim, D. S. Kim, and H. Lee, “Improved resistive switching reliability in graded NiO multilayer for resistive nonvolatile memory devices,” IEEE Electron Device Lett., 31, 725-727 (2010)
    5.9 Y. L. Song, Y. Liu, Y. L. Wang, M. Wang, X. P. Tian, L. M. Yang, and Y. Y. Lin, “Low Reset Current in Stacked AlOx/WOx Resistive Switching Memory,” IEEE ELECTRON DEVICE LETTERS 32, 1439-1441 (2011).
    5.10 D. Varandani, B. Singh, B. R. Mehta, M. Singh, V. N. Singh and D. Gupta, “Resistive Switching Mechanism in Delafossite-Transition Metal Oxide (CulnO2-CuO) Bilayer Structure,” J. Appl. Phys. 107, 103703 (2010).
    5.11 M. Batzill, U. Diebold, “The surface and materials science of tin oxide,” Pro. Sur. Sci. 79, 47-154 (2007).
    5.12 K. G. Godinho, A. Walsh, and G. W. Watson, “Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO,” J. Phys. Chem. C 113, 439-448 (2009).
    5.13 K. Nagashima, T. Yanagida, K. Oka, and T. Kawai, “Unipolar Resistive Switching Characteristics of Room Temperature Grown SnO2 Thin Films,” Appl. Phys Lett. 94, 242902 (2009).
    5.14 J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou, and Z. L. Wang, “Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties,” Small 2, 116-120 (2009).
    5.15 A. Lugstein, M. Steinmair, Y. J. Hyun, G. Hauer, P. Pongratz, and E. Bertagnolli, “Pressure-Induced Orientation Control of the Growth of Epitaxial Silicon Nanowires,“ Nano Lett. 8, 2310-2314 (2008).
    5.16 B. Tian, P. Xie, T. J. Kempa, D. C. Bell and C. M. Lieber, “Single-Crystalline Kinked Semiconductor Nanowire Superstructures,” Nat. Nanotech. 4, 824-829 (2009).
    5.17 Z. T. Xu , K. Jin , L. Gu , Y. Jin , C. Ge , C. Wang , H. Guo , H. Lu , R. Zhao, and G. Yang, “Evidence for a Crucial Role Played by Oxygen Vacancies in LaMnO3 Resistive Switching Memories,” Small 8, 1279-1284 (2012).
    5.18 R. Huang, Y. H. Ikuhara, T. Mizoguchi, S. D. Findlay, A. Kuwabara, C. A. J. Fisher, H. Moriwake, H. Oki, T. Hirayama, and Y. Ikuhara, “Oxygen-Vacancy Ordering at Surfaces of Lithium Manganese (III,IV) Oxide Spinel Nanoparticles,” Angew. Chem. Int. Ed. 50, 3053-3057 (2011).
    5.19 H. Hojo, T. Mizoguchi, Hiromichi Ohta, S. D. Findlay, N. Shibata, T. Yamamoto, and Y. Ikuhara, “Atomic Structure of a CeO2 Grain Boundary: The Role of Oxygen Vacancies,” Nano Lett. 10, 4668-4672 (2010).
    5.20 S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, Y. Ikuhara, “Dynamics of Annular Bright Field Imaging in Scanning Transmission Electron Microscopy,” Ultramicroscopy 110, 903-923 (2010).
    5.21 O. Bierwagen, M. E. White, M. Y. Tsai, T. Nagata and J. S. Speck, “Non-Alloyed Schottky and Ohmic Contacts to As-Grown and Oxygen-Plasma Treated n-Type SnO2 (110) and (101) Thin Films,” Appl. Phys. Express 2, 106502 (2009).

    Chapter 6 Low Temperature Synthesis of Copper Telluride Nanostructures: Phase Formation, Growth, and Electrical Transport Properties

    6.1 K. Ramanathan et al. "Properties of 19_2% Efficiency ZnO/CdS/CuInGaSe2 Thin-Film Solar Cells," Prog. Photovolt: Res. Appl. 11, 225-230 (2003).
    6.2 C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang, L. J. Chen, "Oriented Growth of Large Scale Nickel Sulfide Nanowire Arrays via a General Solution Route for Lithium-Ion Battery Cathode Applications," J. Mater. Chem. 19, 7277-7283 (2009).
    6.3 C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, B. J. Hwang, L. J. Chen, "Direct Growth of High-Rate Capability and High Capacity Copper Sulfide Nanowire Array Cathodes for Lithium-Ion Batteries," J. Mater. Chem. 20, 6638-6645 (2010).
    6.4 R. Y. Wang, J. P. F., X. Gu, K. Y. Man, R. A. Segalman, A. Majumdar, D. J. Milliron, J. J. Urban, "Universal and Solution-Processable Precursor to Bismuth Chalcogenide Thermoelectrics," Chem. Mater. 22, 1943-1945 (2010).
    6.5 M. Y. Lu; S. J.; M. P. Lu; C. Y. Lee; L. J. Chen and Z. L. Wang, "ZnO-ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation," Acs Nano 3, 357-362 (2009).
    6.6 M. Y. Lu, M. P. Lu, Y. A. Chung, M. J. Chen, Z. L. Wang and L. J. Chen, "Intercrossed Sheet-Like Ga-Doped ZnS Nanostructures with Superb Photocatalytic Actvitiy and Photoresponse," J. Phys. Chem. C 113, 12878-12882 (2009).
    6.7 R. Kapadia, Z. Fan and A. Javey, "Design Constraints and Guidelines for CdS/CdTe Nanopillar Based Photovoltaics," Appl. Phys. Lett. 96, 103116 (2010).
    6.8 Y. Huang, C. Y. Chen, S. K. Lee, Y. Gao, E. L. Hu, J. D.Yoreo and A. M. Belcher, "Programmable Assembly of Nanoarchitectures Using Genetically Engineered Viruses," Nano Lett. 5, 1429-1434 (2005).
    6.9 K. Sridhar and K. Chattopadhyay, "Synthesis by Mechanical Alloying and Thermoelectric Properties of Cu2Te," Journal of Alloys and Compounds, 264, 293–298 (1998).
    6.10 H. M.Pathan and C. D. Lokhande, "Deposition of Metal Chalcogenide Thin Films by Successive Ionic Layer Adsorption and Reaction (SILAR) Method," Bull. Mater. Sci. 27, 85-111 (2004).
    6.11 N. Vouroutzis, N. Frangis and C. Manolikas, "The Double Modulation Superstructure of the Room Temperature Stable Phase of Stoichiometric Cu2Te," Phys. Stat. Sol. 202, 271-280 (2005).
    6.12 H Kikuchi, H Iyetomi and A Hasegawa, "Insight into the Origin of Superionic Conductivity from Electronic Structure Theory," J. Phys.: Condens. Matter 10, 11439–11448 (1998).
    6.13 S.-Y. Miyatani, S. Mori and M. Yanagihara, "Phase Diagram and Electrical Properties of Cu2-δTe," J. Phys. Soc. Jpn. 47, 1152-1158 (1979).
    6.14 A. J. Brunneri, H. B.; R. Lapka, P. Oelhafen, R. Schögl and H. J. Güntherodt, "The Electronic Structure of Glassy and Crystalline Cu-Te Alloys," J. Phys. C: Sol. Stat. Phys. 20, 5233-5239 (1987).
    6.15 V. J. Fulari, V. P. M. and S. A. Gangawane, "Measurement of Properties of Copper Telluride Thin Films Using Holography," Prog. Electromag. Re. C 12, 53-64 (2010).
    6.16 J. Zhou, X. Wu, A. Duda,; G. Teeter and S. H. Demtsu, "The Formation of Different Phases of CuxTe and Their Effects on CdTe/CdS Solar Cells," Thin Solid Films 515, 7364-7369 (2007).
    6.17 J. L. F. Da Silva, S. H. Wei, J. Zhou and X. Wu, "Stability and Electronic Structures of CuxTe," Appl. Phys. Lett. 91, 091902 (2007).
    6.18 X. Wu, J. Z., A. Duda, Y. Yan, G. Teeter, S. Asher, W. K.Metzger, S. Demtsu, S.-H. Wei and R. Noufi, "Phase Control of CuxTe Film and Its Effects on CdS/CdTe Solar Cell," Thin Solid Films, 515, 5798-5803 (2007).
    6.19 Y. Zhang, Z.-P. Qiao and X.-M. Chen, "Microwave-Assisted Elemental Direct Reaction Route to Nanocrystalline Copper Chalcogenides CuSe and Cu2Te," J. Mater. Chem. 12, 2747-2748 (2002).
    6.20 L. Zhang, Z. Ai, F. Jia, L. Liu, X. Hu and J. C. Yu, "Controlled Hydrothermal Synthesis and Growth Mechanism of Various Nanostructured Films of Copper and Silver Tellurides," Chem. Eur. J. 12, 4185–4190 (2006).
    6.21 G. She, X. Zhang, W. Shi, Y. Cai, N. Wang, P. Liu and D. Chen, "Template-Free Electrochemical Synthesis of Single-Crystal CuTe Nanoribbons," Crystal Growth & Design 8, 1789-1791 (2008).
    6.22 P. Kumar and K. Singh, "Element Directed Aqueous Solution Synthesis of Copper Telluride Nanoparticles, Characterization, and Optical Properties," Crystal Growth & Design 9, 3089-3094 (2009).
    6.23 Simándi I. László, Catalytic Activation of Dioxygen by Metal Complexes, Kluwer Academic Publishers, Dordrecht, vol. 13. (1992).
    6.24 E. Lifshitz, M. B., V. Kloper, A. Kigel, M. S. Eisen and S. Berger, "Synthesis and Characterization of PbSe Quantum Wires, Multipods, Quantum Rods, and Cubes," Nano Lett. 3, 857-862 (2003).
    6.25 Y. Li, Z. Wang and Y. Ding, "Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine," Inorg. Chem. 38, 4737-4740 (1999).
    6.26 Y. D. Li, Y. Ding, H. W. Liao and Y. T. Qian, "Room-Temperature Conversion Route to Nanocrystalline Mercury Chalcogenides HgE (E=S,Se,Te)," J. Phys. Chem. Solids 60, 965-968 (1999).
    6.27 L.J. Chen and W.W. Wu, "In situ TEM Investigation of Dynamical Changes of Nanostructures," Mater. Sci. Engng. R 70, 303-319 (2010).
    6.28 C. Y. Wang, N. W. Gong and L. J. Chen, "High-Sensitivity Solid-State Pb(Core)/ZnO(Shell) Nanothermometers Fabricated by a Facile Galvanic Displacement Method," Adv. Mater. 20, 4789-4792 (2008).
    6.29 S. Kashida, W. S., M. Mori, D. Yoshimura, "Valence Band Photoemission Study of the Copper Chalcogenide Compounds, Cu2S, Cu2Se and Cu2Te," Journal of Physics and Chemistry of Solids, 64, 2357-2363 (2003).
    6.30 M. A. Caldwell, S. Raoux, R. Y. Wang, H. S. Philip Wong and D. J. Milliron, " Synthesis and Size-Dependent Crystallization of Colloidal Germanium Telluride Nanoparticles," J. Mater. Chem. 20, 1285-1291 (2010).
    6.31 M. B. Smith et al. "Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3," J. Am. Chem. Soc. 130, 6955-6963 (2008).
    6.32 F. Huang and J. F. Banfild, "Size-Dependent Phase Transformation Kinetics in Nanocrystalline ZnS," J. Am. Chem. Soc. 127, 4523-4529 (2005).
    6.33 J. Tang, C. Y. Wang, F. Xiu, M. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen and K. L. Wang, "Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors," ACS Nano 5, 6008-6015 (2011).
    6.34 A. C. Ford, J. C. Ho, Y. L. Chueh, Y. C. Tseng, Z. Fan, J. Guo, J. Bokor and A. Javey, "Diameter-Dependent Electron Mobility of InAs Nanowires," Nano Lett. 9, 360-365 (2009).
    6.35 D. Ferizovic and M. Munoz, "Optical, Electrical and Structural Properties of Cu2Te Thin Films Deposited by Magnetron Sputtering," Thin Solid Films 519, 6115-6119 (2011).

    Chapter 8 Future Prospects

    8.1 R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories –Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mat. 21, 2632-2663 (2009).
    8.2 J. J. Yang, M. D. Pickett, XueMa Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nat. Nanotech. 3, 429-433 (2008).
    8.3 K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, J. S. Kim, B. H. Park and T. Kawai, “Intrinsic Mechanisms of Memristive Switching,” 11, 2114-2118 (2011).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE