研究生: |
陳亭蓉 Chen, Ting Jung |
---|---|
論文名稱: |
過表達基質細胞衍生因子-1 以建立高侵襲性的 ALTS1C1 小鼠腫瘤模式 Establishment of a Highly Invasive ALTS1C1 Tumor Model by Overexpressing SDF-1 |
指導教授: |
江啟勳
Chiang, Chi-Shiun |
口試委員: |
張建文
Chang, Chien-Wen 洪志宏 Hong, Ji-Hong |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 基質細胞衍生因子 、神經膠質瘤 、腫瘤微環境 |
外文關鍵詞: | SDF-1, Glioma, Tumor microenviroment |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經膠質瘤 (Glioma) 是最常見也是最惡性的原發性中樞神經系 統腫瘤,其強大的侵襲性使其在臨床上 90%-95% 的患者在發現罹患 此疾病後平均存活率僅兩年[1],而該腫瘤強大的侵襲力與腫瘤血管 新生能力、腫瘤相關巨噬細胞及腫瘤缺氧區分佈有密切關係。研究指 出腫瘤所分泌的血管新生相關基因 sdf-1 會影響腫瘤生長速率並改 變腫瘤的侵襲能力[2, 3]。本研究以小鼠星狀細胞 (ALTS1C1) 作為研 究的模型,過表達 sdf-1 基因來探討其對腫瘤微環境的影響。首先, 利用 liposome 轉殖 DNA 的方式建立 ALTS1C1-SDF-1 細胞株。觀 察 SDF-1 對細胞分裂與增生能力的影響,再以組織免疫染色法探討 腫瘤微血管密度、巨噬細胞及缺氧區域的病理狀態,最後藉由流式細 胞儀分析腫瘤相關巨噬細胞 (TAMs) 與微膠細胞 (Microglia) 在腫 瘤生長各時期的比例分佈。實驗結果發現新建立的 ALTS1C1-SDF-1 腦腫瘤模式小鼠最短生存天數僅 21 天,相較於 ALTS1C1 腫瘤小數 平均存活天數(29天)大幅的縮短,且 ALTS1C1-SDF-1 腫瘤具備許多 臨床上高度侵襲性的腦腫瘤特性,包括表現量較高的腫瘤血管密度、 分佈密集的腫瘤相關巨噬細胞和較低的缺氧區;從不同時期的腫瘤相 關巨噬細胞比例分佈結果再次証實 Sdf-1 的分泌會增加腫瘤內巨噬 細胞的分佈數量。本論文研究提供了一個俱有高度侵襲能力的臨床腦 腫瘤小鼠模式,可以用來研發設計腦腫瘤治療的新策略。
Gliomas are the most common primary neoplasms of the central nervous system (CNS) in adults. The powerful tumor invasiveness is
closely related to tumor angiogenesis, tumor-associated macrophages and hypoxia. Studies indicate that stroma-derived factor -1 (SDF-1), one of tumors-secreted angiogenesis-related factors, affects tumor growth rate and tumor invasion capability. In this study, we used mouse astrocytoma cells, ALTS1C1, as a research model to over-express sdf-1 gene in order to establish an invasive tumor model and study the tumor microenvironments of an invasive astrocytoma. Firstly, the ALTS1C1-SDF-1 cell line was established by using transgenic DNA liposome method. Secondly, the relationship between SDF-1 and tumor cell migration, proliferation, tumor microvessel density, or tumor -associated macrophages was studied by immunohistochemical (IHC) apprach. Finally, the relative change of microglia and macrophage during tumor progression was examined by flow cytometery. This study has successfully established an invasive brain tumor model and provided evidences to demonstrate that SDF-1 acts as a chemoattractant or survival factor for TAM tropism toward hypoxic tumor region. This brain tumor model serves an important tumor model for the design of new treatment protocol against the invasive glioma.
1. Akesson, A., B. Julin, and A. Wolk, Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res, 2008. 68(15): p. 6435-41.
2. Hong, X., et al., SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett, 2006. 236(1): p. 39-45.
3. Teicher, B.A. and S.P. Fricker, CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res, 2010. 16(11): p. 2927-31.
4. Raizer, J.J., HER1/EGFR tyrosine kinase inhibitors for the treatment of glioblastoma multiforme. J Neurooncol, 2005. 74(1): p. 77-86.
5. Louis, N., D., et al., The 2007 WHO ClassiWcation of Tumours of the Central Nervous System. Acta Neuropathol 2007. 114: p. 97-109.
6. de Vries, N.A., J.H. Beijnen, and O. van Tellingen, High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treat Rev, 2009. 35(8): p. 714-23.
7. Chen, J., et al., CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell, 2011. 19(4): p. 541-55.
8. Carmeliet, P. and R. Jain, K., Angiogenesis in cancer and other diseases. Nature, 2000. 407: p. 249-257.
9. di Tomaso, E., et al., Glioblastoma recurrence after cediranib therapy in patients: lack of "rebound" revascularization as mode of escape. Cancer Res, 2011. 71(1): p. 19-28.
10. Nussenbaum, F. and I.M. Herman, Tumor angiogenesis: insights and innovations. J Oncol, 2010. 2010: p. 132641.
11. Girolamo, F., et al., Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets. PLoS One, 2013. 8(12): p. e84883.
12. Gerhardt, H. and C. Betsholtz, Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res, 2003. 314(1): p. 15-23.
13. Shinae Kizaka-Kondoh, M.I., Hiroshi Harada,Masahiro Hiraoka, Tumor hypoxia: A target for selective cancer therapy. Cancer Sci, 2003. 94: p. 1021-1028.
14. J. Martin Brown, A.J.G., The Unique Physiology of Solid Tumors: Opportunities (and Problems) for Cancer Therapy. Cancer Reserch, 1998. 58: p. 1408-1416.
15. Ke, Q. and M. Costa, Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol,2006. 70(5): p. 1469-80.
16. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003.
3(10): p. 721-32.
17. Ho c̈ kel, M., K. Schlenger, and P. Vaupel, Hypoxic Cervical Cancers with Low
Apoptotic Index Are Highly Aggressive. Cancer Res, 1999. 59: p. 4525-4528.
18. Michael Ho ̈ckel, P.V., Tumor Hypoxia: Definitions and Current Clinical,
Biologic, and Molecular Aspects. National Cancer Institute, 2001. 93: p.
266-276.
19. Teicher., B.A., J.S. Lazo., and A.C. Salterelli., Classification of Antineoplastic
Agents by their Selective Toxicities toward Oxygenated and Hypoxie Tumor
Cells. Cancer Res, 1981. 41: p. 73-81.
20. KATO, Y., et al., Effects of Acute and Chronic Hypoxia on the
Radiosensitivity of Gastric and Esophageal Cancer Cells. Anticancer Res,
2011. 31: p. 3369-3376.
21. Schafer, M. and S. Werner, Cancer as an overhealing wound: an old
hypothesis revisited. Nat Rev Mol Cell Biol, 2008. 9(8): p. 628-38.
22. Garcia-Lora, A., I. Algarra, and F. Garrido, MHC class I antigens, immune
surveillance, and tumor immune escape. J Cell Physiol, 2003. 195(3): p.
346-55.
23. Laoui, D., et al., Tumor-associated macrophages in breast cancer: distinct
subsets, distinct functions. Int J Dev Biol, 2011. 55(7-9): p. 861-7.
24. Gabrusiewicz, K., et al., Characteristics of the alternative phenotype of
microglia/macrophages and its modulation in experimental gliomas. PLoS
One, 2011. 6(8): p. e23902.
25. Green, C.E., et al., Chemoattractant signaling between tumor cells and
macrophages regulates cancer cell migration, metastasis and
neovascularization. PLoS One, 2009. 4(8): p. e6713.
26. Perego, C., S. Fumagalli, and M.G. De Simoni, Temporal pattern of
expression and colocalization of microglia/macrophage phenotype markers
following brain ischemic injury in mice. J Neuroinflammation, 2011. 8: p. 174.
27. Eric, C., Gliomagenesis: Genetic Alterations and Mouse Models. Nat Rev
Genet, 2001. 2: p. 120-129.
84
28. Wang, S.-C., Tumor Microenvironments of A New Murine Astrocytoma. NTHU, 2011.
29. Thelen, M., Dancing to the tune of chemokines. Nature, 2001. 2: p. 129-134.
30. Kucia, M., et al., CXCR4–SDF-1 signalling, locomotion, chemotaxis and
adhesion. Molecular Histology 2004. 35: p. 233-245.
31. Simone Barbero, R.B., Adriana Bajetto, Carola Porcile, Paolo Pirani, Jean
Louis Ravetti, Gian Luigi Zona, Renato Spaziante, Tullio Florio, and Gennaro Schettini, Stromal Cell-derived Factor 1alpha Stimulates Human Glioblastoma Cell Growth
through the Activation of Both Extracellular Signal-regulated Kinases 1/2 and Akt. Cancer Research, 2003. 63: p. 1959-1974.
32. Bajetto, A., et al., Expression of CXC chemokine receptors 1-5 and their
ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell
proliferation and migration. Neurochem Int, 2006. 49(5): p. 423-32.
33. Zlotnik, A., Chemokines in neoplastic progression. Semin Cancer Biol, 2004.
14(3): p. 181-5.
34. Kei Tashiro, H., Ralf Heiler, Michio Schirozu, Toru Nakano, Tasuku Honjo., Signal Sequence Trap: A Cloning Strategy for Secreted Proteins and Type I
Membrane Proteins. Science, 1993. 261: p. 600-603.
35. Sung, B., et al., Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res, 2008. 68(21): p. 8938-44.
36. Balkwill, F., Chemokine biology in cancer. Immunology, 2003. 15: p. 49-55.
37. Luker, K.E. and G.D. Luker, Functions of CXCL12 and CXCR4 in breast
cancer. Cancer Lett, 2006. 238(1): p. 30-41.
38. Dewan, M.Z., et al., Stromal cell-derived factor-1 and CXCR4 receptor
interaction in tumor growth and metastasis of breast cancer. Biomed
Pharmacother, 2006. 60(6): p. 273-6.
39. Liang, Z., et al., Blockade of invasion and metastasis of breast cancer cells via
targeting CXCR4 with an artificial microRNA. Biochem Biophys Res
Commun, 2007. 363(3): p. 542-6.
40. Orimo, A., et al., Stromal fibroblasts present in invasive human breast
carcinomas promote tumor growth and angiogenesis through elevated
SDF-1/CXCL12 secretion. Cell, 2005. 121(3): p. 335-48.
41. Flynn, G., et al., Regulation of chemokine receptor expression in human microglia and astrocytes. Journal of Neuroimmunology, 2003. 136(1-2): p.84-93.
42. Li, M. and R.M. Ransohoff, Multiple roles of chemokine CXCL12 in the
central nervous system: a migration from immunology to neurobiology. Prog
Neurobiol, 2008. 84(2): p. 116-31.
43. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and
TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest,
2012. 92(1): p. 151-62.
44. Kubota Y, K.H., Martin GR, Lawley TJ., Role of laminin and basement
membrane in the morphological differentiation of human endothelial cells into
capillary-like structures. Cell Biol. , 1988. 107: p. 1589-1598.
45. Mao, C., R.Y. Liao, and Q. Chen, Loss of PTEN expression predicts resistance to EGFR-targeted monoclonal antibodies in patients with
metastatic colorectal cancer. Br J Cancer, 2010. 102(5): p. 940.
46. Moskovits, N., et al., p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts.
Cancer Res, 2006. 66(22): p. 10671-6.
47. Addadi, Y., et al., p53 status in stromal fibroblasts modulates tumor growth in
an SDF1-dependent manner. Cancer Res, 2010. 70(23): p. 9650-8.
48. Nishiyama, A., Polydendrocytes: NG2 cells with many roles in development
and repair of the CNS. Neuroscientist, 2007. 13(1): p. 62-76.
49. Bergers, G. and L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat
Rev Cancer, 2003. 3(6): p. 401-10.
50. William, P., J., Leenders., et al., Antiangiogenic Therapy of Cerebral
Melanoma Metastases Results in Sustained Tumor Progression via Vessel
Co-Option. Clin Cancer Res, 2004. 10: p. 6222-6230.
51. Yancopoulos., G.D., et al., Vascular-specific growth factors and blood vessel
formation. Nat Rev Cancer, 2000. 407: p. 242-248.
52. Lewis, C.E. and J.W. Pollard, Distinct role of macrophages in different tumor
microenvironments. Cancer Res, 2006. 66(2): p. 605-12.
53. Qian, B.Z. and J.W. Pollard, Macrophage diversity enhances tumor
progression and metastasis. Cell, 2010. 141(1): p. 39-51.
54. Bingle, L., N.J. Brown, and C.E. Lewis, The role of tumour-associated
macrophages in tumour progression: implications for new anticancer therapies. J Pathol, 2002. 196(3): p. 254-65.\
55. Jeffrey, W., Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev, 2004. 4: p. 71-78.
56. R.L.Zimmer. and R.M.Woollacott., Regulation of the Macrophage Content of Neoplasms by Chemoattractants. Science, 1982. 220: p. 210-212.
57. Chiang, C.S., et al., Functional phenotype of macrophages depends on assay procedures. Int Immunol, 2008. 20(2): p. 215-22.
58. Stout, R.D., et al., Macrophages Sequentially Change Their Functional Phenotype in Response to Changes in Microenvironmental Influences. The Journal of Immunology, 2005. 175(1): p. 342-349.
59. Watters, J.J., J.M. Schartner, and B. Badie, Microglia function in brain tumors. J Neurosci Res, 2005. 81(3): p. 447-55.
60. Komohara, Y., et al., Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol, 2008. 216(1): p. 15-24.
61. Utsugi., T., et al., Elevated Expression of Phosphatidylserine in the Outer Membrane Leaflet of Human Tumor Cells and Recognition by Activated Human Blood Monocytes. Cancer Res, 1991. 51: p. 3062-3066.
62. OHNO, S., et al., Correlation of Histological Localization of Tumor-associated Macrophages with Clinicopathological Features
in Endometrial Cancer. ANTICANCER RESEARCH, 2004. 24(3335-3342).
63. Jin, D.K., et al., Cytokine-mediated deployment of SDF-1 induces
revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med,
2006. 12(5): p. 557-67.
64. Wang, Y., et al., Evidence for ischemia induced host-derived bone marrow
cell mobilization into cardiac allografts. J Mol Cell Cardiol, 2006. 41(3): p.
478-87.
65. Ceradini, D.J., et al., Progenitor cell trafficking is regulated by hypoxic
gradients through HIF-1 induction of SDF-1. Nat Med, 2004. 10(8): p.
858-64.
66. Aghi, M., et al., Tumor stromal-derived factor-1 recruits vascular progenitors
to mitotic neovasculature, where microenvironment influences their
differentiated phenotypes. Cancer Res, 2006. 66(18): p. 9054-64.
67. Grunewald, M., et al., VEGF-induced adult neovascularization: recruitment,
retention, and role of accessory cells. Cell, 2006. 124(1): p. 175-89.
68. Fang, H.-Y., et al., Hypoxia inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia.
Blood, 2009. 114: p. 844-859.
69. Yin, Q., et al., SDF-1alpha inhibits hypoxia and serum deprivation-induced
apoptosis in mesenchymal stem cells through PI3K/Akt and ERK1/2 signaling
pathways. Mol Biol Rep, 2011. 38(1): p. 9-16.
70. Kawaguchi, A., et al., Inhibition of the SDF-1alpha-CXCR4 axis by the
CXCR4 antagonist AMD3100 suppresses the migration of cultured cells from ATL patients and murine lymphoblastoid cells from HTLV-I Tax transgenic mice. Blood, 2009. 114(14): p. 2961-8.
71. Tsutsumi, H., et al., Therapeutic potential of the chemokine receptor CXCR4 antagonists as multifunctional agents. Biopolymers, 2007. 88(2): p. 279-89.
72. Heusinkveld, M. and S.H. van der Burg, Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med, 2011. 9: p. 216.
73. Kioi, M., et al., Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest, 2010. 120(3): p. 694-705.
74. Kozin, S.V., et al., Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res, 2010. 70(14): p. 5679-85.
75. Heissig, B., et al., Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand. Cell, 2002. 109: p. 625-637.
76. Mansour, A., et al., Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med, 2012. 209(3): p. 537-49.
77. Heissig, B., et al., Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med, 2005. 202(6): p. 739-50.
78. Madlambayan, G., J., et al., Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger. Blood, 2009. 114: p. 4310-4319.
79. Wang, S.C., et al., 2- and 4-Aminobiphenyls induce oxidative DNA damage in human hepatoma (Hep G2) cells via different mechanisms. Mutat Res, 2006. 593(1-2): p. 9-21.
80. Salvucci, O., et al., Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood, 2002. 99: p.
2703-2711.
81. Lewis, C. and C. Murdoch, Macrophage Responses to Hypoxia
Implications for Tumor Progression and Anti-Cancer Therapies. American Journal of
Pathology,, 2005. 167: p. 627-635.
82. Mantovani, A., P. Allavena, and A. Sica, Tumour-associated macrophages as
a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer, 2004. 40(11): p. 1660-7.