簡易檢索 / 詳目顯示

研究生: 葉展宏
論文名稱: 欠致動雙足機器人之動態行走
The Dynamic Walking of An Underactuated Biped Robot
指導教授: 葉廷仁
口試委員: 顏炳郎
陳榮順
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 雙足機器人人類自然行走步態欠致動
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在建立一套雙足機器人的行走方法,以簡單的欠致動系統:賽格威(Segway)的零點動態為出發點,利用其特性設計機器人行走策略,希望藉此提升機器人的運動速度以及效率。
    理論分析部分,將賽格威(Segway)輪子部分與機器人下半身做近似,將輪子陸續換為夾角固定的八角輪與擺動腳、支撐腳作分析,接著經由機器人上半身與擺動腳的控制策略,達成在矢狀平面(sagittal plane)部分等速前進的目標。實作部分加入額狀平面的動態平衡與矢狀平面的行走策略相配合,驗證行走的可行性。


    摘要 I 誌謝 II 目錄 III 圖目錄 VI 表目錄 XI 1. 第一章 序論 12 1.1. 研究動機與目的 12 1.2. 雙足機器人的驅動力來源 12 1.2.1全致動式雙足機器人 13 1.2.1. 被動式雙足機器人 15 1.2.2. 欠致動式雙足機器人 17 1.3. 人類行走 19 1.4. 論文簡介 22 2. 第二章 欠致動雙足機器人行走分析 23 2.1. 矢狀平面分析 23 2.1.1 Segway分析 24 2.1.2無框的輪狀機器人(rimless robt)分析 24 2.1.3. 無框的輪狀機器人加上半身(rimless robt+upperbody)分析 26 2.1.4三連桿雙足機器人分析 27 2.1.4.1行走過程的欠致動關節 27 2.1.4.2 行走分析 28 3. 控制器設計 30 3.1矢狀平面(sagittal plane)控制器設計 30 3.1.1 Segway 30 3.1.1.1 動態模型推導 30 3.1.1.2 控制器設計 31 3.1.2 rimless robot 加上半身控制器設計 32 3.1.2.1動態模型推導 32 3.1.2.2控制器設計 35 3.1.3 三連桿雙足機器人控制器設計 36 3.1.2.1動態模型推導 36 3.1.2.2 控制器設計 38 4. 模擬驗證 42 4.1 Segway 42 4.1.1模擬參數與控制目標 42 4.1.2模擬結果 43 4.2 rimless robot+上半身 45 4.2.1模擬參數與控制目標 45 4.2.2模擬結果 47 4.3 三連桿雙足機器人 55 4.3.1模擬參數與控制目標 55 4.3.2模擬結果 56 5. 行走實驗 69 5.1. 硬體架構 69 5.1.1. 模型的座標定義與自由度配置 69 5.1.2. 控制單元及電路 72 5.1.3. 高低頻互補式角度感測器模組 73 5.1.4. 腳底壓力感測器模組 74 5.1.5. 致動器 84 5.2. 實驗結果 87 6. 結論與未來工作 89 6.1 結論 89 6.2未來方向 89 附錄 90 參考文獻 94

    [1] M. Hirai, et al., “The Development of Honda Humanoid robot,” in Proc., IEEE International Conference on Robotics and Automation, pp. 1321-1326, May 1998.
    [2] M. Vukobratovic, B. Brovac, D. Surla and D.Stokic, Biped Locomotion, Springer-Verlag, 1990.
    [3] K. Nagasaka, H. Inour and M. Inaba, “Dynamic Walking Pattern Generation for a Humanoid Robot Based on Optimal Gradient Method,” Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, Vol.6, pp. 908-913, 1999.
    [4] J. Yamaguchi, et al., “Development of a Bipedal Hunamoid Robot Having Antagonistic Driven Joints and Three DOF Trunk,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.96-101, 1998.
    [5] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and H. Hirukawa, “A Realtime Pattern Generator for Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 31-37, 2002.
    [6] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and H. Hirukawa, “Biped walking pattern generation by using preview control of zero-moment point,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1620-1626, 2003
    [7] J.-H. Kim, “Walking Pattern Generation of a Biped Walking Robot using Convolution Sum,” 2007 7th IEEE-RAS International Conference on Humanoid Robots, pp. 539-544, Nov. 29 2007-Dec. 1 2007.
    [8] Choi, Kim, Oh and You, “Posture/Walking Control for Humanoid Robot Based on Kinematic Resolution of CoM Jacobian With Embedded Motion,” IEEE Trans. On Robotics, vol.23, issue 6, pp.1285-1293, 2007.
    [9] T. Sugihara, Y Nakamura, H. Inoue, “Realtime Humanoid Motion Generation through ZMP Manipulation based on Inverted Pendulum Control,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1404-1409, 2002.
    [10] T. McGeer, “Passive Dynamic Walking,” International Journal of Robotics Research, Vol. 9, No., 2, pp. 62-82, 1990.
    [11] T. McGeer, “Passive Walking with Knees,” Proceedings of the IEEE Conference on Robotics and Automation, pp. 1640-1645, 1990.
    [12] T. McGeer, “Passive Dynamic Biped Catalogue,” Proc. 2nd Int. Symp. Exper. Robot, pp. 465-490, NewYork: Springer-Verlag , 1991.
    [13] S. Collins, M. Wisse and A. Ruina, “A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees,” The International Journal of Robotics Research, Vol. 20, No. 7, pp. 607-615, July 2001.
    [14] S. Collins, A. Ruina, R. Tedrake and M. Wisse, “Efficient Bipedal Robots Based On Passive-dynamic Walkers,” Science, Vol. 307, No. 5712, pp. 1082-1085, 2005.
    [15] J. W. Grizzle, G. Abba and F. Plestan, “Asymptotically Stable Walking For Biped Robots: Analysis Via Systems With Impulse Effects,” IEEE Transactions on Automatic Control, l, Vol. 46, pp. 51-64, January 2001.
    [16] E. R. Westervelt, G. Buche, and J. W. Grizzle, “Experimental Validation Of A Framework For The Design Of Controllers That Induce Stable Walking In Planar Bipeds,” The International Journal of Robotics Research, vol. 23, No. 6, pp. 559-582, 2004.
    [17] C. Chevallereau, D. Djoudi and J. W. Grizzle, “Stable Bipedal Walking with Foot Rotation Through Direct Regulation of the Zero Moment Point,” IEEE Trans. On Robotics, Vol.24, No.32, pp. 390-401, 2008.
    [18] C. Chevallereau, J. W. Grizzle, and C.-L. Shih, “Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot,” IEEE Trans. On Robotics, Vol. 25, No.1, pp. 37-50, Feb. 2009.
    [19] Ting-Ying Wu, and T.-J. Yeh, “Optimal Design and Implementation of an Energy-Efficient, Semi-Active Biped,” Robotica, Vol. 27, 2009, pp. 841-852.
    [20] Ting-Ying Wu, and T.-J. Yeh, “An Experimental Iterative Learning Strategy for a Biped Performing Semi-Active Walking,” 2008, submitted to International Journal of Humanoid Robotics.
    [21] K. Nishiwakit, S. Kagamit, Y. Kuniyoshit, M. Inabat, H. Inouet, “Toe Joints that Enhance Bipedal and Fullbody Motion of Humanoid Robots,” Proc. IEEE Int. Conf. on Robotics and Automation, May. 2002.
    [22] R. Sellaouti, O. Stasse, S. Kajita, K. Yokoi and A. Kheddar, “Faster and Smoother Walking of Humanoid HRP-2 with Passive Toe Joints,” IEEE Int. Conf. on Intelligent Robotics and Systems, 9-15, pp. 909-4914, Oct. 2006.
    [23] Y. Ogura, K. Shimomura, A. Kondo, A. Morishima, T. Okubo, S. Momoki, Hun-ok Lim and A. Takanishi, “Human-like Walking with Knee Stretched, Heel-contact and Toe-off Motion by a Humanoid Robot,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3976-3981, 2006.
    [24] Napoleon,Shigeki Nakaura and Mistsuji Sampei, “Balance Control Analysis of Humanoid Robot based on ZMP Feedback Control”,Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,EPFL,Lausanne,Switzeriand, October 2002
    [25] Russell L. Tedrake,”Applied Optimal Control for Dynamically Stable Legged Locomotion”,2004
    [26] Jese W.Grizzzle,Gabriel Abba,and Frank Plestan,”Asymptotically Stable Walking for Biped Robots:Analysis via Systems with Impulse Effects”
    [27] Terumasa NARUKAWA,Masaki TAKAHASHI and Kauzo YOSHIDA,”Biped Locomotion on Level Ground by Torso and Swing-Leg Control Based on Passive-Dynamic Walking ”
    [28] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. Choi
    and B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion,
    ser. Control and Automation. Boca Raton: CRC Press, June 2007.
    [29] 詹凱鈞,「欠致動雙足機器人動態行走之控制與實作」,國立清華
    大學動力機械工程學系碩士論文,2011
    [30] 陳育霆,「人力驅動式自我平衡獨輪車之控制系統設計與實作」,
    國立清華大學動力機械工程學系碩士論文,2010
    [31] http://world.honda.com/ASIMO/technology/
    [32] http://orthoteers.com/images/uploaded/images7/gait4.jpg
    [33] http://www.wpi.edu/News/Transformations/2002Winter/ibot.html
    [34] http://www.segway.com
    [35] http://www.transducertechniques.com/SLB-Load-Cell.cfm
    [36] http://www.robotis.com/xe/dynamixel_en
    [37] http://wn.com/Nao_Robot
    [38] http://www.aldebaran-robotics.com/en

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE