研究生: |
李芷葳 Li, Chih-Wei |
---|---|
論文名稱: |
考量動力學模型進行3-UPU並聯機構之運動規劃 Motion Planning for a 3-UPU type Parallel Kinematic Mechanism Considering Dynamic Model |
指導教授: |
宋震國
Sung, Cheng-Kuo |
口試委員: |
邱昱仁
Chiu, Yu-Jen 田孟軒 Tien, Meng-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 並聯式機構 、3-UPU 、Sigmoid-Curve 、加減速規劃 、動力學模型 、能耗分析 |
外文關鍵詞: | PKM, 3-UPU, Sigmoid-Curve, Acceleration and deceleration, Dynamic model, Energy consumption analysis |
相關次數: | 點閱:35 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了實現精準且效率的運動表現,並避免過大的加減速變化影響系統動態行為,甚至造成機台受損,本文考量 3-UPU 機構之三軸長度變化急跳度與馬達驅動扭矩,規劃出運動輪廓最佳化之方法。
本文首先在工作空間(Work space)中,規劃末端效應器之 S 型(Sigmoid-Curve)運動曲線,完成初步的速度規劃。而後推導機構之順、逆向運動學解析解,求得系統線性驅動量與末端效應器座標之關係。再以逆向運動學推導出之關節空間中(Joint space),連桿長度變化的運動輪廓,考慮其加速度和急跳度限制,將時間視為變量並以最小化總運動時間為目標,以 MATLAB 之 fmincon 函式進行非線性約束之速度曲線最佳化。同時,利用逆向動力學可推導驅動軸之線性推力和扭矩,並利用驅動扭矩計算系統的能耗,將能耗納入連桿長度變化曲線優化的限制條件之一,確保在平滑過程中不會導致過高的能源消耗。
同時,為了驗證運動精度與能耗要求,本文建立了包含滾珠螺桿撓性影響的 Simulink 機構模型,以模擬系統的動態響應。最終,本文提出的方法能有效降低機構振動,並在能耗控制方面滿足合理範圍,充分發揮並聯式工具機的性能。
To achieve precise and efficient motion performance, and to avoid sudden changes in acceleration and deceleration that could impact the dynamic behavior of the system or even cause damage to the machine, this paper considers the jerk of change of link length and the motor torque for optimizing the motion profile.
First, in the workspace, the end-effector’s motion profile is designed by Sigmoid-Curve to complete the initial velocity planning of the mechanism. Subsequently, the forward and inverse kinematic analytical solutions are derived to establish the relationship between the link length and the coordinate of end-effector. Then using the inverse kinematic derives the accelerations and jerks of change of link length as constraints, this paper adopts time as a variable and performs the nonlinear constraint optimization of the velocity curve, with the objective of minimizing the total motion time by MATLAB’s fmincon function.
Simultaneously, to verify the motion accuracy and energy consumption, a Simulink model of the mechanism, incorporating the flexibility of ball screws, is established to simulate the system’s dynamic response. The inverse dynamics are also used to derive the linear thrust and the motor torque of drive shafts. The energy consumption of the system is calculated based on the driving torque, ensuring that the smoothing process will not result in excessive energy consumption. Ultimately, the proposed method effectively reduces the mechanism’s vibration and meets reasonable energy consumption requirements, thereby fully exploiting the performance of the parallel kinematic machine tool.
[1] 张曙, "工业4.0和智能制造," 机械设计与制造工程, vol. 43, no. 8, p. 5, 2014.
[2] D. Kono, A. Matsubara, I. Yamaji, and T. Fujita, "High-precision machining by measurement and compensation of motion error," International Journal of
Machine Tools and Manufacture, vol. 48, no. 10, pp. 1103-1110, 2008/08/01/ 2008, doi: https://doi.org/10.1016/j.ijmachtools.2008.02.005.
[3] Z. Pandilov and V. Dukovski, "COMPARISON OF THE CHARACTERISTICS BETWEEN SERIAL AND PARALLEL ROBOTS," Acta Technica Corviniensis-Bulletin of Engineering, vol. 7, no. 1, 2014.
[4] V. E. Gough, "Universal tyre test machine," Proc. FISITA 9th Int. Technical Congr., London, 1962, pp. 117-137, 1962.
[5] D. Stewart, "A Platform with Six Degrees of Freedom," Proceedings of the Institution of Mechanical Engineers, vol. 180, no. 1, pp. 371-386, 1965/06/01
1965, doi: 10.1243/PIME_PROC_1965_180_029_02.
[6] K. H. Hunt, "Structural Kinematics of In-Parallel-Actuated Robot-Arms," Journal of Mechanisms, Transmissions, and Automation in Design, vol. 105, no.
4, pp. 705-712, 1983, doi: 10.1115/1.3258540.
[7] J.-P. Merlet, "Singular Configurations of Parallel Manipulators and Grassmann Geometry," The International Journal of Robotics Research, vol. 8, no. 5, pp. 45-56, 1989/10/01 1989, doi: 10.1177/027836498900800504.
[8] R. Clavel, "DELTA, A fast robot with parallel geometry," 1988.
[9] Z. Affi, L. Romdhane, and A. Maalej, "Dimensional synthesis of a 3-translational-DOF in-parallel manipulator for a desired workspace," European
Journal of Mechanics - A/Solids, vol. 23, no. 2, pp. 311-324, 2004/03/01/ 2004, doi: https://doi.org/10.1016/j.euromechsol.2004.01.003.
[10] A. Fournier, F. Pierrot, and C. Reynaud, "DELTA: a simple and efficient parallel robot," Robotica, vol. 8, no. 2, pp. 105-109, 1990, doi: 10.1017/S0263574700007669.
[11] "國內外並聯機器人介紹,每家都有核心競爭力." https://kknews.cc/zhtw/tech/kkl252b.html (accessed.
[12] J. Gallardo-Alvarado, "The Original Stewart Platform," in Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory, 2016, ch. Chapter 13, pp. 281-299.
[13] "FANUC ROBOT | 發那科 拳 頭 機 械 手 臂 M-1iA." https://www.ezb2b.com/tch/cp1064-157-fanuc-robot-%E7%99%BC%E9%82%A3%E7%A7%91-%E6%8B%B3%E9%A0%AD%E6%A9%9F%E6%A2%B0%E6%89%8B%E8%87%82-m-1ia (accessed.
[14] 郭倫毓, 多軸加工機之智慧型高速高精度軌跡控制. 2002.
[15] M. Goldberg, "Improving productivity by using innovative metal cutting solutions with an emphasis on green machining," International Journal of
Machining and Machinability of Materials, vol. 12, no. 1-2, pp. 117-125, 2012/01/01 2012, doi: 10.1504/IJMMM.2012.048561.
[16] P. M. Ho, N. Uchiyama, S. Sano, Y. Honda, A. Kato, and T. Yonezawa, "Simple Motion Trajectory Generation for Energy Saving of Industrial Machines," SICE Journal of Control, Measurement, and System Integration, vol. 7, no. 1, pp. 29-34, 2014/01/01 2014, doi: 10.9746/jcmsi.7.29.
[17] J. R. G. Martínez, J. R. Reséndiz, M. Á. M. Prado, and E. E. C. Miguel, "Assessment of jerk performance s-curve and trapezoidal velocity profiles," in
2017 XIII International Engineering Congress (CONIIN), 15-19 May 2017 2017, pp. 1-7, doi: 10.1109/CONIIN.2017.7968187.
[18] H. Shuanghui, S. Fang, L. Jie, and H. Minghui, "An applied CNC acceleration and deceleration control algorithm research," in 2008 IEEE International
Conference on Mechatronics and Automation, 5-8 Aug. 2008 2008, pp. 404-408, doi: 10.1109/ICMA.2008.4798788.
[19] N. Kim Doang, I. M. Chen, and N. Teck-Chew, "Planning algorithms for s-curve trajectories," in 2007 IEEE/ASME international conference on advanced
intelligent mechatronics, 4-7 Sept. 2007 2007, pp. 1-6, doi: 10.1109/AIM.2007.4412440.
[20] S.-K. Wu, M.-S. Tsai, M.-T. Lin, and H.-W. Huang, "Development of Novel Tool Center Point Velocity Planning Algorithm for Five Axis Machine Tool,"
International Journal of Precision Engineering and Manufacturing, vol. 19, no. 8, pp. 1187-1199, 2018/08/01 2018, doi: 10.1007/s12541-018-0140-x.
[21] H. Li, M. D. Le, Z. M. Gong, and W. Lin, "Motion Profile Design to Reduce Residual Vibration of High-Speed Positioning Stages," IEEE/ASME
Transactions on Mechatronics, vol. 14, no. 2, pp. 264-269, 2009, doi: 10.1109/TMECH.2008.2012160.
[22] T.-C. Lu and S.-L. Chen, "Genetic algorithm-based S-curve acceleration and deceleration for five-axis machine tools," The International Journal of
Advanced Manufacturing Technology, vol. 87, no. 1, pp. 219-232, 2016/10/01 2016, doi: 10.1007/s00170-016-8464-0.
[23] 謝岳峻, "<s 型加減速最佳化.pdf>," 104.
[24] D. Lee and C. W. Ha, "Optimization Process for Polynomial Motion Profiles to Achieve Fast Movement With Low Vibration," IEEE Transactions on Control
Systems Technology, vol. 28, no. 5, pp. 1892-1901, 2020, doi: 10.1109/TCST.2020.2998094.
[25] C. Guarino Lo Bianco, A. Plazzi, and M. Romano, "Velocity planning for autonomous vehicles," presented at the IEEE Intelligent Vehicles Symposium,
2004, 2004.
[26] C.-S. Chen and A.-C. Lee, "Design of acceleration/deceleration profiles in motion control based on digital FIR filters," International Journal of Machine Tools and Manufacture, vol. 38, no. 7, pp. 799-825, 1998/07/01/ 1998, doi: https://doi.org/10.1016/S0890-6955(97)00065-5.
[27] R.-Y. Huang, C.-W. Cheng, M.-C. Tsai, and A.-C. Lee, "Acceleration-based FIR filters for trajectory interpolation with different kinematic constraints and target velocities for NC systems," Control Engineering Practice, vol. 124, p. 105204, 2022/07/01/ 2022, doi: https://doi.org/10.1016/j.conengprac.2022.105204.
[28] V. A. Balogun and P. T. Mativenga, "Modelling of direct energy requirements in mechanical machining processes," Journal of Cleaner Production, vol. 41, pp. 179-186, 2013/02/01/ 2013, doi: https://doi.org/10.1016/j.jclepro.2012.10.015.
[29] G. Y. Zhao, Z. Y. Liu, Y. He, H. J. Cao, and Y. B. Guo, "Energy consumption in machining: Classification, prediction, and reduction strategy," Energy, vol. 133, pp. 142-157, 2017/08/15/ 2017, doi: https://doi.org/10.1016/j.energy.2017.05.110.
[30] Y. Altintas and K. Erkorkmaz, "Feedrate Optimization for Spline Interpolation In High Speed Machine Tools," CIRP Annals, vol. 52, no. 1, pp. 297-302,
2003/01/01/ 2003, doi: https://doi.org/10.1016/S0007-8506(07)60588-5.
[31] G. Carabin, E. Wehrle, and R. Vidoni, "A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems," Robotics, vol. 6,
no. 4, doi: 10.3390/robotics6040039.
[32] K. Paes, W. Dewulf, K. V. Elst, K. Kellens, and P. Slaets, "Energy Efficient Trajectories for an Industrial ABB Robot," Procedia CIRP, vol. 15, pp. 105-110, 2014/01/01/ 2014, doi: https://doi.org/10.1016/j.procir.2014.06.043.
[33] G. Mathijssen, B. Brackx, M. V. Damme, D. Lefeber, and B. Vanderborght, "Series-parallel elastic actuation (SPEA) with intermittent mechanism for
reduced motor torque and increased efficiency," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3-7 Nov. 2013
2013, pp. 5841-5846, doi: 10.1109/IROS.2013.6697202.
[34] W. R. Brown and A. G. Ulsoy, "A passive-assist design approach for improved reliability and efficiency of robot arms," in 2011 IEEE International Conference on Robotics and Automation, 9-13 May 2011 2011, pp. 4927-4934, doi: 10.1109/ICRA.2011.5979964.
[35] J. Borràs and A. M. Dollar, "Actuation Torque Reduction in Parallel Robots Using Joint Compliance," Journal of Mechanisms and Robotics, vol. 6, no. 2,
2014, doi: 10.1115/1.4026628.
[36] 陳晏菘, "利用螺旋理論探討具變化連桿長度 3-UPU 型並聯式機構之剛性分析," 2020. [Online]. Available: https://hdl.handle.net/11296/a829b3
[37] 黃天虹, "具變化連桿長度3-UPU型並聯式機構之誤差模型與敏感度分析," 2021. [Online]. Available: https://hdl.handle.net/11296/tkhnzy
[38] 李怡萱, "考量接頭及連桿撓性之 3-UPU 型並聯式機構空間剛性分析," 2022. [Online]. Available: https://hdl.handle.net/11296/g3s9we
[39] 王庭郁, "考量致動器動力學與高耦合特性的 3-UPU 並聯式機構之自抗擾控制," 2023. [Online]. Available: https://hdl.handle.net/11296/9p8kv2
[40] A. Bataleblu, A. Hassani, S. A. Khalilpour, and H. D. Taghirad, "Full dynamic model of 3-UPU translational parallel manipulator for model-based control schemes," Robotica, vol. 40, no. 8, pp. 2815-2830, 2022, doi: 10.1017/S0263574721001971.
[41] 蔡維玲, "Delta 機器人之運動規劃與系統識別," 國立臺灣大學, 2014. [Online]. Available: https://doi.org/10.6342/NTU.2014.10858
[42] S. H. Schot, "Jerk: the time rate of change of acceleration," American Journal of Physics, vol. 46, no. 11, pp. 1090-1094, 1978.
[43] C. G. L. Bianco, "Minimum-Jerk Velocity Planning for Mobile Robot Applications," IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1317-1326,
2013, doi: 10.1109/TRO.2013.2262744.
[44] R.-Y. Huang, C.-W. Cheng, and A.-C. Lee, "Parametric FIR filtering for G-code interpolation with corner smoothing and zero circular contour error for NC systems," The International Journal of Advanced Manufacturing Technology, vol. 125, no. 9, pp. 4379-4397, 2023/04/01 2023, doi: 10.1007/s00170-023-11005-z.
[45] H. Gurocak, Industrial motion control: motor selection, drives, controller tuning, applications. John Wiley & Sons, 2015.
[46] M. Boryga, P. Kołodziej, and K. Gołacki, "The Use of Asymmetric Polynomial Profiles for Planning a Smooth Trajectory," Applied Sciences, vol. 12, no. 23, doi: 10.3390/app122312284.
[47] 李志杰、蔡力钢、刘志峰, "加加速度连续的 S 型加减速规划算法研究," presented at the 第五届全国现代制造集成技术学术会议, 2018.
[48] J. Han and C. Moraga, "The influence of the sigmoid function parameters on the speed of backpropagation learning," in International workshop on artificial neural networks, 1995: Springer, pp. 195-201.
[49] F. A. Potra and S. J. Wright, "Interior-point methods," Journal of Computational and Applied Mathematics, vol. 124, no. 1, pp. 281-302, 2000/12/01/ 2000, doi: https://doi.org/10.1016/S0377-0427(00)00433-7.
[50] E. J. Oliveira, L. W. Oliveira, J. L. R. Pereira, L. M. Honório, I. C. Silva, and A. L. M. Marcato, "An optimal power flow based on safety barrier interior point method," International Journal of Electrical Power & Energy Systems, vol. 64, pp. 977-985, 2015/01/01/ 2015, doi:
https://doi.org/10.1016/j.ijepes.2014.08.015.
[51] G.-M. Cho, "An interior-point algorithm for linear optimization based on a new barrier function," Applied Mathematics and Computation, vol. 218, no. 2, pp. 386-395, 2011/09/15/ 2011, doi: https://doi.org/10.1016/j.amc.2011.05.075.
[52] " 線 性 規 劃 ( 四 ) :單形法 ." https://ccjou.wordpress.com/2013/09/27/%E7%B7%9A%E6%80%A7%E8%A6%8F%E5%8A%83-%E5%9B%9B%EF%BC%9A%E5%96%AE%E5%BD%A2%E6%B3%95/(accessed.
[53] "Python 实 现 内 点 法 Interior-Point Method 求解线性规划 ." https://zhuanlan.zhihu.com/p/433158564 (accessed.