研究生: |
鄭崇浩 Cheng, Chung-Hao |
---|---|
論文名稱: |
利用飛秒瞬態吸收光譜技術研究細菌視紫質於脂質奈米碟環境的光異構化反應 Photoisomerization of bacteriorhodopsin in lipid nanodiscs by using femtosecond transient absorption spectroscopy |
指導教授: |
陳益佳
Chen, I-Chia |
口試委員: |
朱立岡
Chu, Li-Kang 余慈顏 Yu, Tsyr-Yan 邱繼正 Chiu, Chi-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 飛秒瞬態吸收 、細菌視紫質 、奈米碟 、光異構化反應 |
外文關鍵詞: | Photoisomerization, nanodiscs |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細菌視紫質為嗜鹽古生菌Halobacterium salinarum在低氧或是缺氧的環境時,於細胞膜上合成的深紫色蛋白質。它的結構主要由七個α螺旋及一個視黃醛組成,當受到光激發時,視黃醛會進行光異構化反應,進而引發光迴圈反應進行質子幫浦,讓生物體合成生長所需的能量ATP。過去研究中指出,視黃醛周圍的電荷分佈變化會影響光異構化的速率。而將細菌視紫質包覆於脂質奈米碟中,雖可提供優異的水相分散力及模擬細胞膜中脂雙層的環境,但是奈米碟的環境對於光異構化速率的影響仍是未知的。因此在本實驗中吾人使用飛秒瞬態吸收技術,以波長550 nm和580 nm雷射光分別激發樣品之trans及cis結構,探討不同pH值(7.0和5.8)及不同尺寸之奈米碟(nbR_DMPG_cΔH5和nbR_DMPG_cE3D1)對細菌視紫質光異構化行為的影響,並與原生狀態的紫膜(PM)以及微胞環境下(Triton X-100)的單體細菌視紫質(mbR)比較。吾人發現改變pH值(7.0和5.8)並不會影響光異構化的速率,是因為改變pH值對於視黃醛周圍的電荷分佈並無影響,改變奈米碟之尺寸大小,對周圍電荷分佈影響一樣。而在不同結構中, PM有最快的光異構化速率(0.56~0.59 ps)-1,mbR次之(0.84~0.94 ps)-1,nbR最慢(0.9~1.1 ps)-1。吾人認為,當由PM的結構變成mbR及nbR時,Asp85會靠近視黃醛,讓視黃醛周圍的電荷分佈變得較負,使得光異構化位能面之能障昇高,進而使得光異構化速率變慢。
Bacteriorhodopsin is a dark purple protein synthesized by Halobacterium salinarum on the cell membrane in hypoxic environment. Its structure is composed of seven α-helices and one retinal. When bacteriorhodopsin is excited by light, the retinal undergoes isomerization reaction, then initiates a photocycle reaction, allowing the organism to synthesize the energy ATP. Embedding bacteriorhodopsin in lipid nanodisc provides excellent aqueous dispersibility and native-mimic lipid bilayer environment, however, the influence of the nanodisc environment on the photoisomerization rate is unclear. It has been pointed out in previous studies that changes in the charge distribution around retinal affect the rate of photoisomerization. Therefore, in the present work, we used femtosecond transient absorption to detect the first isomerization process of retinal in the photocycle in pH 7.0 and 5.8, and embedded in two sizes of nanodiscs nbR_DMPG_cΔH5 and nbR_DMPG_cE3D1. For comparison, the natural state purple membrane (PM) and the monomeric bacteriorhodopsin (mbR) in micelle (Triton X-100) were also studied. We found that changing the size of the nanodiscs and the pH (7.0 and 5.8) has no effect on the rate of photoisomerization because there is no variation in the charge distribution around the retinal. PM has the fastest photoisomerization rate (0.56~0.59 ps)1, followed by mbR (0.84~0.94 ps)1, and nbR(0.9~1.1 ps)1. In mbR and nbR, Asp85 becomes closer to the terminal N of retinal resulting in raising the energy of the S1 state, greater isomerization barrier in the S1 surface, and slower rate of isomerization.
1. Stoeckenius, W.; Rowen, R., A Morphological Study of Halobacterium Halobium and Its Lysis in Media of Low Salt Concentration. J. Cell Biol. 1967, 34, 365-393.
2. Stoeckenius, W.; Kunau, W. H., Further Characterization of Particulate Fractions from Lysed Cell Envelopes of Halobacterium Halobium and Isolation of Gas Vacuole Membranes. J. Cell Biol. 1968, 38, 337-357.
3. Oesterhelt, D.; Stoeckenius, W., Rhodopsin-Like Protein from the Purple Membrane of Halobacterium Halobium. Nature New Biol. 1971, 233, 149.
4. Oesterhelt, D.; Stoeckenius, W., Functions of a New Photoreceptor Membrane. Proc. Natl. Acad. Sci. U.S.A. 1973, 70, 2853-2857.
5. Blaurock, A. E.; Stoeckenius, W., Structure of the Purple Membrane. Nature New Biol. 1971, 233, 152.
6. Stoeckenius, W.; Lozier, R. H., Light Energy Conversion in Halobacterium Halobium. J. Cell. Biochem. 1974, 2, 769-774.
7. Lozier, R. H.; Bogomolni, R. A.; Stoeckenius, W., Bacteriorhodopsin: A Light-Driven Proton Pump in Halobacterium Halobium. Biophys. J. 1975, 15, 955-962.
8. Sharkov, A. V.; Pakulev, A. V.; Chekalin, S. V.; Matveetz, Y. A., Primary Events in Bacteriorhodopsin Probed by Subpicosecond Spectroscopy. Biochim. Biophys. Acta, Bioenerg. 1985, 808, 94-102.
9. Terner, J.; El-Sayed, M. A., Time-Resolved Resonance Raman Spectroscopy of Photobiological and Photochemical Transients. Acc. Chem. Res. 1985, 18, 331-338.
10. Rothschild, K. J.; Zagaeski, M.; Cantore, W. A., Conformational Changes of Bacteriorhodopsin Detected by Fourier Transform Infrared Difference Spectroscopy. Biochem. Biophys. Res. Commun. 1981, 103, 483-489.
11. Gerwert, K.; Souvignier, G.; Hess, B., Simultaneous Monitoring of Light-Induced Changes in Protein Side-Group Protonation, Chromophore Isomerization, and Backbone Motion of Bacteriorhodopsin by Time-Resolved Fourier-Transform Infrared Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 9774-9778.
12. Richter, H.-T.; Brown, L. S.; Needleman, R.; Lanyi, J. K., A Linkage of the Pka's of Asp-85 and Glu-204 Forms Part of the Reprotonation Switch of Bacteriorhodopsin. Biochemistry 1996, 35, 4054-4062.
13. Du, M.; Fleming, G. R., Femtosecond Time-Resolved Fluorescence Spectroscopy of Bacteriorhodopsin: Direct Observation of Excited State Dynamics in the Primary Step of the Proton Pump Cycle. Biophys. Chem. 1993, 48, 101-111.
14. Henderson, R.; Unwin, P. N. T., Three-Dimensional Model of Purple Membrane Obtained by Electron Microscopy. Nature 1975, 257, 28.
15. Lemke, H. D.; Oesterhelt, D., Lysine 216 Is a Binding Site of the Retinyl Moiety in Bacteriorhodopsin. FEBS Lett. 1981, 128, 255-260.
16. Henderson, R.; Baldwin, J. M.; Ceska, T. A.; Zemlin, F.; Beckmann, E.; Downing, K. H., Model for the Structure of Bacteriorhodopsin Based on High-Resolution Electron Cryo-Microscopy. J. Mol. Biol. 1990, 213, 899-929.
17. Carlson, J. W.; Jonas, A.; Sligar, S. G., Imaging and Manipulation of High-Density Lipoproteins. Biophys. J. 1997, 73, 1184-1189.
18. Forte, T. M.; Nichols, A. V.; Gong, E. L.; Lux, S.; Levy, R. I., Electron Microscopic Study on Reassembly of Plasma High Density Apoprotein with Various Lipids. Biochim. Biophys. Acta, Lipids Lipid Metab. 1971, 248, 381-386.
19. Wlodawer, A.; Segrest, J. P.; Chung, B. H.; Chiovetti, R.; Weinstein, J. N., High-Density Lipoprotein Recombinants: Evidence for a Bicycle Tire Micelle Structure Obtained by Neutron Scattering and Electron Microscopy. FEBS Lett. 1979, 104, 231-235.
20. Atkinson, D.; Smith, H.; Dickson, J.; Austin, J., Interaction of Apoprotein from Porcine High-Density Lipoprotein with Dimyristoyl Lecithin. 1. The Structure of the Complexes. Eur. J. Biochem. 1976, 64, 541.
21. Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G., Self-Assembly of Discoidal Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins. Nano Lett. 2002, 2, 853-856.
22. Bayburt, T. H.; Sligar, S. G., Self-Assembly of Single Integral Membrane Proteins into Soluble Nanoscale Phospholipid Bilayers. Protein Science : A Publication of the Protein Society 2003, 12, 2476-2481.
23. Song, L.; El-Sayed, M. A.; Lanyi, J. K., Protein Catalysis of the Retinal Subpicosecond Photoisomerization in the Primary Process of Bacteriorhodopsin Photosynthesis. Science 1993, 261, 891.
24. Logunov, S. L.; Song, L.; El-Sayed, M. A., Ph Dependence of the Rate and Quantum Yield of the Retinal Photoisomerization in Bacteriorhodopsin. J. Phys. Chem. 1994, 98, 10674-10677.
25. Wang, J.; Link, S.; Heyes, C. D.; El-Sayed, M. A., Comparison of the Dynamics of the Primary Events of Bacteriorhodopsin in Its Trimeric and Monomeric States. Biophys. J. 2002, 83, 1557-1566.
26. https://en.wikipedia.org/w/index.php?title=Bacteriorhodopsin&oldid=844704823
27. http://www.ks.uiuc.edu.
28. Logunov, I.; Schulten, K., Quantum Chemistry: Molecular Dynamics Study of the Dark-Adaptation Process in Bacteriorhodopsin. J. Am. Chem. Soc. 1996, 118, 9727-9735.
29. Nango, E., et al., A Three-Dimensional Movie of Structural Changes in Bacteriorhodopsin. Science 2016, 354, 1552.
30. Gai, F.; Hasson, K. C.; McDonald, J. C.; Anfinrud, P. A., Chemical Dynamics in Proteins: The Photoisomerization of Retinal in Bacteriorhodopsin. Science 1998, 279, 1886.
31. Luecke, H.; Schobert, B.; Richter, H.-T.; Cartailler, J.-P.; Lanyi, J. K., Structure of Bacteriorhodopsin at 1.55 Õ Resolution 11edited by D. C. Rees. J. Mol. Biol. 1999, 291, 899-911.
32. Baudry, J.; Tajkhorshid, E.; Molnar, F.; Phillips, J.; Schulten, K., Molecular Dynamics Study of Bacteriorhodopsin and the Purple Membrane. J. Phys. Chem. B 2001, 105, 905-918.
33. Lanyi, J. K., Understanding Structure and Function in the Light-Driven Proton Pump Bacteriorhodopsin. J. Struct. Biol. 1998, 124, 164-178.
34. Lanyi, J. K., Bacteriorhodopsin. Annu. Rev. Physiol. 2004, 66, 665-688.
35. Morgan, J. E.; Vakkasoglu, A. S.; Lanyi, J. K.; Gennis, R. B.; Maeda, A., Coordinating the Structural Rearrangements Associated with Unidirectional Proton Transfer in the Bacteriorhodopsin Photocycle Induced by Deprotonation of the Proton-Release Group: A Time-Resolved Difference Ftir Spectroscopic Study(). Biochemistry 2010, 49, 3273-3281.
36. Krebs, M. P.; Isenbarger, T. A., Structural Determinants of Purple Membrane Assembly. Biochim. Biophys. Acta, Bioenerg. 2000, 1460, 15-26.
37. Becher, B.; Tokunaga, F.; Ebrey, T. G., Ultraviolet and Visible Absorption Spectra of the Purple Membrane Protein and the Photocycle Intermediates. Biochemistry 1978, 17, 2293-2300.
38. Mowery, P. C.; Lozier, R. H.; Chae, Q.; Tseng, Y.-W.; Taylor, M.; Stoeckenius, W., Effect of Acid Ph on the Absorption Spectra and Photoreactions of Bacteriorhodopsin. Biochemistry 1979, 18, 4100-4107.
39. Oesterhelt, D.; Meentzen, M.; Schuhmann, L., Reversible Dissociation of the Purple Complex in Bacteriorhodopsin and Identification of 13-Cis and All-Trans-Retinal as Its Chromophores. Eur. J. Biochem. 1973, 40, 453-463.
40. Scherrer, P.; Mathew, M. K.; Sperling, W.; Stoeckenius, W., Retinal Isomer Ratio in Dark-Adapted Purple Membrane and Bacteriorhodopsin Monomers. Biochemistry 1989, 28, 829-834.
41. Gonzalez-Manas, J.; Montoya, G.; Rodriguez-Fernandez, C.; Gurtubay, J.; Goni, F., The Interaction of Triton X-100 with Purple Membrane: Effect of Light-Dark Adaptation. Biochim. Biophys. Acta, Bioenerg. 1990, 1019, 167-169.
42. Petrich, J. W.; Breton, J.; Martin, J. L.; Antonetti, A., Femtosecond Absorption Spectroscopy of Light-Adapted and Dark-Adapted Bacteriorhodopsin. Chem. Phys. Lett. 1987, 137, 369-375.
43. Garavelli, M.; Celani, P.; Bernardi, F.; Robb, M. A.; Olivucci, M., The C5h6nh2+ Protonated Shiff Base: An Ab Initio Minimal Model for Retinal Photoisomerization. J. Am. Chem. Soc. 1997, 119, 6891-6901.
44. Robb, M., Potential-Energy Surfaces for Ultrafast Photochemistry Static and Dynamic Aspects. Faraday Discuss. 1998, 110, 51-70.
45. González-Luque, R.; Garavelli, M.; Bernardi, F.; Merchán, M.; Robb, M. A.; Olivucci, M., Computational Evidence in Favor of a Two-State, Two-Mode Model of the Retinal Chromophore Photoisomerization. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 9379-9384.
46. Kobayashi, T.; Saito, T.; Ohtani, H., Real-Time Spectroscopy of Transition States in Bacteriorhodopsin During Retinal Isomerization. Nature 2001, 414, 531.
47. Tachikawa, H.; Iyama, T., Td-Dft Calculations of the Potential Energy Curves for the Trans–Cis Photo-Isomerization of Protonated Schiff Base of Retinal. J. Photochem. Photobiol. B 2004, 76, 55-60.
48. Kandori, H.; Katsuta, Y.; Ito, M.; Sasabe, H., Femtosecond Fluorescence Study of the Rhodopsin Chromophore in Solution. J. Am. Chem. Soc. 1995, 117, 2669-2670.
49. Cembran, A.; Bernardi, F.; Olivucci, M.; Garavelli, M., Counterion Controlled Photoisomerization of Retinal Chromophore Models: A Computational Investigation. J. Am. Chem. Soc. 2004, 126, 16018-16037.
50. Wand, A.; Friedman, N.; Sheves, M.; Ruhman, S., Ultrafast Photochemistry of Light-Adapted and Dark-Adapted Bacteriorhodopsin: Effects of the Initial Retinal Configuration. J. Phys. Chem. B 2012, 116, 10444-10452.
51. Nath, A.; Atkins, W. M.; Sligar, S. G., Applications of Phospholipid Bilayer Nanodiscs in the Study of Membranes and Membrane Proteins. Biochemistry 2007, 46, 2059-2069.
52. Denisov, I. G.; Grinkova, Y. V.; Lazarides, A. A.; Sligar, S. G., Directed Self-Assembly of Monodisperse Phospholipid Bilayer Nanodiscs with Controlled Size. J. Am. Chem. Soc. 2004, 126, 3477-3487.
53. Yusuf, Y.; Massiot, J.; Chang, Y.-T.; Wu, P.-H.; Yeh, V.; Kuo, P.-C.; Shiue, J.; Yu, T.-Y., Optimization of the Production of Covalently Circularized Nanodiscs and Their Characterization in Physiological Conditions. Langmuir 2018, 34, 3525-3532.
54. Nasr, M. L., et al., Covalently Circularized Nanodiscs for Studying Membrane Proteins and Viral Entry. Nature Methods 2016, 14, 49.
55. Feldman, T. B.; Smitienko, O. A.; Shelaev, I. V.; Gostev, F. E.; Nekrasova, O. V.; Dolgikh, D. A.; Nadtochenko, V. A.; Kirpichnikov, M. P.; Ostrovsky, M. A., Femtosecond Spectroscopic Study of Photochromic Reactions of Bacteriorhodopsin and Visual Rhodopsin. J. Photochem. Photobiol. B 2016, 164, 296-305.
56. Hayashi, T.; Matsuura, A.; Sato, H.; Sakurai, M., Full-Quantum Chemical Calculation of the Absorption Maximum of Bacteriorhodopsin: A Comprehensive Analysis of the Amino Acid Residues Contributing to the Opsin Shift. Biophysics 2012, 8, 115-125.