簡易檢索 / 詳目顯示

研究生: 陳韋廷
論文名稱: 皮膚之生物熱傳導方程式研究
Bioheat equation for skin study
指導教授: 李雄略
Lee, Shong-Leih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 48
中文關鍵詞: 皮膚生物熱傳導方程式
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的為研究架構出1維生物熱傳導與血管方程式。此問題是利用動、靜脈在真皮層裡面進行與組織間的熱傳遞,其中提供熱源項為動脈部份,模擬正常皮膚之現象。
    理論分析方面,本文首先架構出一組3維熱傳導與血管方程式來描述正常皮膚中的表皮層、真皮層、血管之間的熱傳效應,將來要架構1維生物熱傳導與血管方程式的重要條件。數值方法將得到3維答案看出,皮膚動、靜脈由如熱交換器一樣逆流的現象,於是將從這個觀點下手,架構出1維生物熱傳導與血管方程式。
    結論方面,本文架構出1維方程式與3維方程式的答案幾乎接近,並從3維答案中得到 、 、 三組常數,成為3維轉成1維的關鍵橋樑,可以用簡單1維做出3維的精準度。


    目錄 目錄 I 摘要 III 致謝 IV 圖目錄 V 符號說明 VI 第一章 序論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究目的 8 第二章 理論分析 9 2.1 問題描述 9 2.2 建立3維統御方程式 9 2.3 初始條件與邊界條件 10 2.4 無因次化 11 2.5 無因次化初始與邊界條件 12 2.6 網格系統 13 2.7 統御方程式之差分 13 2.8 皮膚熱傳導之處理方法 15 2.9 血管內部的熱傳之處理方法 16 2.10 採用雙區網格法之網格系統 17 第三章 數值方法 18 3.1 建立1維生物熱傳導方程式 18 3.2 無因次化 21 3.3 無因次化邊界與血管初始條件 22 3.4 1維統御方程式之差分 23 3.5 計算流程 24 第四章 結果與討論 26 4.1 模擬參數 26 4.2 網格設定 26 4.3 收斂標準 26 4.4 架構3維熱傳導與血管方程式 27 4.5 架構1維生物熱傳導與血管方程式 28 4.6 針對3維不同Bi做比較 29 第五章 結論 30 參考文獻 31

    參考文獻
    [1] Pennes, H. H., 1984, ‘‘Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm, ’’ Journal of Applied Physiology,1, pp. 93-122.
    [2] J.W. Mitchell, T.L. Galvez, J. Hengle, G.E. Myers and K.L. Siebecker,1970, ‘‘Thermal response of human legs during cooling, ’’J. Appl. Physiology ,29, pp.854-865.
    [3] Weinbaum, S., Xu, L. X., Zhu, L., and Ekpene, A., 1997,‘‘A New Fundamental Bioheat Equation for Muscle Tissue: Part I–Blood Perfusion Term, ’’ASME J. Biomech. Eng.,119, pp. 278–288.
    [4] Weinbaum S., L.M. Jiji,1985,‘‘A new simplified bioheat equation for the effect of blood flow on local average tissue temperature,’’J. Biomech. Eng. Trans. ASME,107, pp.131–139.
    [5] Weinbaum, S., and Jiji, L. M.,1987, ‘‘Discussion of Papers by Wissler and Baish et al. "Concerning the Weinbaum-Jiji Bioheat Equation,’’ASME Journal of biomechanical engineering ,109, pp. 234-237.
    [6] Weinbaum S, Jiji LM, Lemons DE.,1992,‘‘The bleed off perfusion term in the Weinbaum-Jiji bioheat equation,’’J Biomech Eng,114, pp.539–42.
    [7] E.Y.K. Ng , H.M. Tan, E.H. Ooi,2009,‘‘Boundary element method with bioheat equation for skin burn injury, ’’. In: burns,35,pp.987-997
    [8] Hedge A. Thermal sensation and Thermoregulation, Lecture Notes, Cornell University
    [9] Yang, M. C. Converse, D. M. Mahvi, and J. G. Webster,2007, ‘‘Expanding the bioheat equation to include tissue internal water evaporation during heating,’’ IEEE Trans. Biomed. Eng.,54, pp.1382–1388
    [10] Brinck, H., and Werner, J., 1994, ‘‘Efficiency Function: Improvement of Classical Bioheat Approach,’’J. Appl. Physiol.,77, pp. 1617–1622.
    [11] Y.M. Xuan, W. Roetzel,1997, ‘‘Bioheat equation of the human thermal system, ’’Chem. Eng. Technol. , 20,pp. 268–276.
    [12] Baish J.W.,1994,‘‘Formulation of a statistical-model of heattransfer in perfused tissue,’’J. Biomech. Eng.-Trans.ASME.,116, pp.521–527.
    [13] Wissler E.H.,1987,‘‘Comments on the new bioheat equation proposed by Weinbaum and Jiji, ’’J. Biomech. Eng. Trans.ASME,109, pp.226–232.
    [14] Chen, M. M., and K. R. Holmes,1980,‘‘Microvascular Contributions in Tissue Heat Transfer, ’’Annals of the New York Academy of Science, 355, pp. 137-150.
    [15] Chato, J.,1980,‘‘Heat Transfer to Blood Vessels, ’’ ASME Journal of biomechanical engineering, 102, pp. 110-118.
    [16] Wissler, E.H., 1988, ‘‘An Analytical Solution Countercurrent Heat Transfer Between Parallel Vessels with a Linear Temperature Gradient, ’’ J. of Biomech. Eng., 110, pp. 254-256.
    [17] Kuznestov A.V.,2006, ‘‘Optimization problems for bioheat equation, ’’ International Communications in Heat and Mass Transfer ,33, pp.537–543.
    [18] T.R. Gowrishankar, Donald A. Stewart, Gregory T. Martin, James
    C. Weaver,2004, ‘‘Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion,’’ Biomedical. Eng.
    [19] Marieb, E. N., 2006, Human Anatomy and Physiology Laboratory Manual, 7th ed., Pearson Custom Publishing, San Francisco, California
    [20] Lee, S. L., 1989, “A Strongly Implicit Solver for 2-Dimensional Elliptic Differential-Equations,” Numerical Heat Transfer,16, pp. 161-178.
    [21] Torvi, D. A. and Dale, J. D., 1994, “A Finite Element Model of Skin Subjected to a Flash Fire”, Journal of Biomechanical Engineering, Transactions of the ASME, 116, pp. 250-255.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE