簡易檢索 / 詳目顯示

研究生: 李忠諺
論文名稱: 以ALD成長氧化鋅鎵透明導電薄膜應用於紫光發光二極體上
GZO Transparent Conductive Layer Grown by ALD on Violet Light-Emitting Diodes
指導教授: 吳孟奇
口試委員: 何充隆
劉埃森
楊智超
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 74
中文關鍵詞: 原子層沉積氧化鋅鎵透明導電薄膜紫光發光二極體
外文關鍵詞: gallium-doped ZnO (GZO), Violet LEDs, InGaN/GaN
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,氧化鋅鎵(GZO)已逐漸成為一個受矚目的透明導電薄膜材料,並且被應用於氮化銦鎵(InGaN)系列的發光二極體(LEDs)上。而GZO本身是屬於寬能隙n-type的半導體氧化物,透過我們研究所得到的結果,發現經由ALD (atomic-layer-deposition)成長厚度為250 nm的GZO薄膜具有高的摻雜濃度(~1×1021 cm-3)及低電阻率(~4×10-4 Ω-cm)的特性,此外,ALD-GZO薄膜在可見光波段有高達約90%的穿透率。
    為了改善GZO薄膜在短波長的穿透率,我們透過快速熱擴散(rapid-thermal diffusion)的新方法,將鋅(Zn)與鎂(Mg)以driven-in的方式摻入ALD-GZO薄膜裡面,藉由紫外光可見光光譜儀量測結果,發現ALD-GZO薄膜在摻入Zn與Mg後其吸收邊界有明顯的藍移現象,並且其能隙也隨之增加。
    另外,我們使用鎳/金(Ni/Au)來做為LEDs的p-GaN接觸電極,藉由調整Ni的厚度以及熱退火的溫度來獲得Ni/Au與p-GaN之間最佳的歐姆接觸,並且根據CTLM (circular transmission line model)的理論求得其最佳之特徵接觸電阻值(specific contact resistance, ρc)為1.4×10-3 Ω•cm2。
    接著我們將Zn與Mg摻入ALD-GZO薄膜來做為透明導電層應用在400 nm及380 nm的InGaN/GaN紫光LEDs上,發現其EL (electroluminescence)的發光強度在注入電流為20 mA的情況下,以Zn與Mg摻入ALD-GZO做為透明導電層的400 nm與380 nm的LEDs與單純只以ALD-GZO來做透明導電層的LEDs相比較,分別提升了約1.4及2.5倍的強度,並且其光輸出功率在注入電流為20 mA的情況下,400 nm與380 nm的LEDs分別從6.1 mW提升至7.7 mW,以及0.7 mW提升至1.9 mW,光輸出功率分別增強了27%與166%,結果顯示將Zn與Mg以driven-in的方式摻入ALD-GZO薄膜,對於應用在較短波長的紫光LEDs上,其發光強度有更明顯的改善效果。


    In recent years, gallium-doped zinc oxide (GZO) has passed into a very popular material as transparent conductive oxide (TCO) films to apply on InGaN-based light-emitting diodes (LEDs). GZO is a wide band-gap and n-type semiconducting oxide, which can be used as a transparent contact. The results reveal that the atomic layer deposition (ALD)-GZO films with a thickness of 250 nm have an electron concentration of ~1 × 1021 cm-3, low resistivity of ~4 × 10-4 Ω-cm, and high transmittance (~90%) at the visible wavelengths.
    In order to enhance the transmittance in short wavelengths of GZO films, we employed Zn and Mg driven-in ALD-GZO films via the novel method of rapid-thermal diffusion. The ultraviolet-visible spectrum shows a significant blue-shift of the absorption band edge and an increasing optical band gap for the Zn and Mg driven-in GZO films.
    Additionally, we used circular transmission line model (CTLM) to perform the experiment of Ni/Au ohmic contact on p-GaN, and tried to adjust the thickness of Ni and annealing temperature to obtain optimum Ni/Au ohmic contact on p-GaN. We acquired the best specific contact resistance (ρc) is 1.4 × 10-3 Ω•cm2.
    By means of Zn and Mg driven-in GZO as transparent conducting layer onto 400- and 380-nm InGaN/GaN, the electroluminescence intensity of 400- and 380-nm LEDs with Zn and Mg driven-in GZO films has nearly 1.4 and 2.5 times of magnitude stronger than the conventional LEDs only with GZO films at 20 mA. The 400- and 380-nm LEDs with Zn and Mg driven-in GZO films also reveal a light output power of 7.7 and 1.9 mW at 20 mA as compared to the conventional LEDs only with GZO films of 6.1 and 0.7 mW, respectively. The 400- and 380-nm LEDs also exhibit an enhancement of 27% and 166% in light output power. These results present that Zn and Mg driven-in ALD-GZO films have significant improvement for the light extraction on the shorter wavelengths for the violet and ultraviolet (UV) LEDs.

    中 文 摘 要..........................................................................I Abstract...........................................................................II 誌 謝..............................................................................III Contents...........................................................................IV List of Figure.....................................................................VI List of Table......................................................................XI Chapter 1. Introduction............................................................1 1-1 Development of III-nitride-based light-emitting diodes.........................1 1-2 Research motivation and purpose................................................3 Chapter 2. The Basis of Theory and Characterization Instruments....................7 2-1 Basic theory of light-emitting diodes..........................................7 2-2 The structure and characteristic of GZO films..................................9 2-3 Atomic layer deposition system.................................................10 2-4 Theory of current spreading layer..............................................11 2-5 Ni/Au ohmic contact on p-GaN...................................................12 2-6 Theory of circular transmission line model.....................................13 2-7 Characterization instruments...................................................15 2-7-1 I-V and C-V characteristic measurement systems...............................15 2-7-2 Electroluminescence (E-L) measurement system.................................15 2-7-3 Luminous Intensity (L-I) measurement.........................................16 2-7-4 Divergence angle measurement system..........................................17 Chapter 3. LEDs Device Structure and Fabrication...................................27 3-1 Epitaxial structure design concept.............................................27 3-2 The design of Mask.............................................................27 3-3 Zn and Mg driven-in ALD-GZO films..............................................28 3-4 Experimental process of CTLM...................................................28 3-5 Experiment process of violet LEDs..............................................29 Chapter 4. Result and Discussion...................................................39 4-1 Electro-optical characteristics of Zn and Mg driven-in ALD-GZO films...........39 4-1-1 Effect of post-annealing temperature on the ALD- GZO films...................39 4-1-2 Effect of driven-in temperature and driven-in source on the ALD-GZO films....40 4-2 The characteristics analysis of Ni/Au ohmic contact on p-GaN...................43 4-3 Electro-optical characteristics of violet LEDs.................................45 4-3-1 I-V characteristics analysis of violet LEDs..................................46 4-3-2 C-V characteristics analysis of violet LEDs..................................48 4-3-3 Electroluminescence (EL) spectrum of violet LEDs.............................49 4-3-4 Luminous Intensity (L-I) of violet LEDs......................................50 4-3-5 Near-field light intensity of violet LEDs....................................51 4-3-6 Divergence angle of violet LEDs..............................................51 4-3-7 Frequency response of violet LEDs............................................51 Chapter 5. Conclusions.............................................................70 References.........................................................................71

    [1]H. Morkoc, Nitride Semiconductors and devices, Springer-Verlag, Berlin (1999).
    [2]G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, IEEE Trans. Electron Devices, vol. 47, pp. 692-696 (2000).
    [3]S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, C. H. Liu, Solid-State Electronics, vol. 47, pp. 1539-1542 (2003).
    [4]E. F. Schubert Light-Emitting Diodes (Cambridge Univ Pess), www.LightEmittingDiodes.org.
    [5]C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C.S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, J. M. Tsai, Materials Science and Engineering, vol. 106, pp. 69-72 (2004).
    [6]L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, IEEE J Quantum Electron., vol. 38, pp. 446-450 (2002).
    [7]L. W. Wu, S. J. Chang, Y. K. Su, R. W Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tasi, J. K. Sheu, Solid-State Electronics, vol. 47, pp. 2027-2030 (2003).
    [8]G. B. Stringfellow, and M. G. Craford, IEEE, vol. 85, pp. 1752-1764 (1997).
    [9]S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, Appl. Phys. Lett., vol. 66, pp. 1249 (1995).
    [10]S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett., vol. 69, pp. 4188-4190 (1996).
    [11]Y. A. Chang, "Study of Structure Optimization in III-V Semi -conductor Light Emitting Devices", p. 3-4 (2007).
    [12]H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett., vol. 48, pp. 353-355 (1986).
    [13]H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114 (1989).
    [14]S. Nakamura, N. Iwasa, M. Senoh and T. Mukai, Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266 (1992).
    [15]S. Nakamura and T. Mukai, Jpn. J. Appl. Phys., vol. 31, pp. L1457-L1459 (1992).
    [16]S. Nakamura, T. Mukai and M. Senoh, J. Appl. Phys., vol. 76, pp. 8189-8191 (1994).
    [17]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Jpn. J. Appl. Phys., vol. 36, pp. 1059-1061 (1997).
    [18]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys., vol. 31, pp. L139-L142 (1992).
    [19]M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, IEEE, vol. 19, pp. 1880-1882 (2007).
    [20]S. C. Huang, K. C. Shen, D. S. Wuu, P. M. Tu, H. C. Kuo, J. Appl. Phys., vol. 110, pp. 123102 (2011).
    [21]Richard Gutt, Thorsten Passow, Michael Kunzer, Wilfried Pletschen, Lutz Kirste, Kamran Forghani, Ferdinand Scholz, Klaus Köhler, and Joachim Wagner, Appl. Phys. E., vol. 5, pp. 032101 (2012).
    [22]Siddha Pimputkar, James S. Speck, Steven P. DenBaars and Shuji Nakamura, Nature Photonics, vol. 3, pp. 180-182 (2009).
    [23]S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett., vol. 69, pp. 4188 (1996).
    [24]E. S. Jeon, V. Kozlov, Y.-K. Song, A. Vertikov, M. Kuball, A. V. Nurmikko, H. Liu, C. Chen, R. S. Kern, C. P. Kuo, and M. G. Craford, Appl. Phys. Lett., vol. 69, pp. 4194 (1996).
    [25]P. Perlin, V. Iota, B. A. Weinstein, P. Wisniewski, T. Suski, P. G.. Eliseev, and M. Osinski, Appl. Phys. Lett., vol. 70, pp. 2993 (1997).
    [26]Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, S. Fujita, and S. Nakamura, Appl. Phys. Lett., vol. 70, pp. 981 (1997).
    [27]C.-C. Pan, "Investigation of InGaN Ultraviolet Light-Emitting Diodes", pp.7 (2007).
    [28]S. H. Tu, C. J. Lan, S. H. Wang, M. L. Lee, K. H. Chang, R. M. Lin, J. Y. Chang, and J. K. Sheu, Appl. Phys. Lett., vol. 96, pp. 133504-133506 (2010).
    [29]C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, IEEE Electron Device Lett., vol. 34, pp. 611-613, May 2013.
    [30]J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, and G. C. Chi, Journal of the Electrochemical Society, vol. 154, pp. H521-H524 (2007).
    [31]Y. Matsumoto, M. Murakami, Z. W. Jin, A. Ohtomo, M. Lippmaa, M. Kawasaki, and H. Koinuma, Jpn. J. Appl. Phys. Lett., vol. 38, pp. L603-L605 (1999).
    [32]郭浩中、賴芳儀、郭守義, "Principles and Applications of Light -emitting Diode", ( 2009).
    [33]P. Nunes, E. Fortunato, R. Martins, International Journal of Inorganic Materials, vol. 3, pp. 1125-1128 (2001).
    [34]T. Minami, S. Suzuki, T. Miyata, "Electrical Conduction Mechanism of Highly Transparent and Conductive ZnO Thin Films", MRS Symp. Proc., vol. 666 (2001).
    [35]T. Minami, "New n-type transparent conducting oxides", MRS Bulletin /Aug. (2000).
    [36]C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, M. Wuttig, J. Appl. Phys., vol. 95, pp. 1911-1917 (2004).
    [37]J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, G. C. Chi, Journal of The Electrochemical Society, vol. 154, pp. H521-H524 (2007).
    [38]Thompson G.H.B., "Physics of Semiconductor Laser Devices", New York, pp. 572 (1980).
    [39]Rensselaer Polytechnic Institute, Troy, New York, "LIGHT EMITTING DIODES", Second Edition, E. Fred Schubert.
    [40]C. Y. Hu, Z. X. Qin, Z. X. Feng, Z. Z. Chen, Z. B. Ding, Z. J. Yang, T. J. Yu, X. D. Hu, S. D. Yao, G. Y. Zhang, Materials Science and Engineering B, vol. 128, pp. 37-43 (2006).
    [41]楊謹隆, 陳貞夙, "氮化鎵元件之製程科技", 電子月刊 第75 期, 130 (2001).
    [42]J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, J. J. Kai, J. Appl. Phys., vol.86, pp. 4491-4497 (1999).
    [43]L. C. Chen, J. K. Ho, C. S. Jong, C. C. Chiu, K. K. Shih et al, Appl. Phys. Lett., vol. 76, pp. 3703-3705 (2000).
    [44]L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho et al, J. Appl. Phys., vol. 86, pp. 3826-3832 (1999).
    [45]X. A. Cao, E. B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer, D. Walker, Solid-State Electronics, vol. 46, pp. 1235-1239 (2002).
    [46]G. K. Reeves, "Specific contact resistance using a circular transmission line model", Solid-State Electron, vol. 23, pp. 487-490 (1980).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE