簡易檢索 / 詳目顯示

研究生: 劉峻幗
Chun-Kuo Liu
論文名稱: 複合式生醫陶瓷支架上關節軟骨細胞行為的研究
Study of articular chondrocyte behavior on complex bioceramic scaffold
指導教授: 黃大仁
Ta-Jen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 108
中文關鍵詞: 組織工程支架生醫陶瓷三鈣磷酸鹽(TCP)聚磷酸鈣(CPP)關節軟骨細胞
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以一新穎的組織工程技術來發展修復關節軟骨的方法。材料的選擇方面,鈣磷酸鹽類的生醫陶瓷由於富含鈣和磷離子,和骨組織的成分相近,所以大部分的研究多將鈣磷酸鹽類當作培養硬骨細胞的支架,不過近年來的研究發現其培養軟骨細胞亦有不錯成效。

    經評估後本論文使用β-三鈣磷酸鹽(β-tricalcium phosphate,β-TCP)來製作高緻密性的支架,其孔隙度僅有3vol%且孔徑趨近於0;聚磷酸鈣(calcium polyphosphate,CPP)可製作三種不同表面相態(CPP1為β相淬火,CPP2為晶相,CPP3為γ相)的多孔性支架,其孔隙度均為35∼40vol%左右,孔徑以CPP1為最大(達150um),機械強度以CPP1和CPP2較佳,而降解時間以CPP1較合適。

    在探討不同的培養方式對培養軟骨細胞的影響時,發現到比起静置培養,懸浮培養除了稍微降低了細胞貼附的能力之外,其他不管是對細胞的增生或是分泌細胞間質的能力都有顯著的提升。在探討不同性質的支架對培養軟骨細胞的影響時,發現到比起CPP2和CPP3,CPP1不管是對細胞的貼附和增生或是分泌細胞間質的能力都比較好。綜合材料和生物性質測試的結果,β相淬火(CPP1)的陶瓷片為一合適的關節軟骨組織工程支架。

    TCP陶瓷片為一相當緻密的分隔層材料,此分隔層材料成功的與軟骨區與硬骨區形成了一複合式的支架結構。在探討複合式支架對培養軟骨細胞的影響時,發現到比起無分隔層的支架,有分隔層的支架對細胞貼附和增生的能力都比較好,但分泌細胞間質的能力稍微降低。


    In the thesis, the methods of repairing articular cartilage is developed by a novel tissue engineering technique. Calcium phosphates contain ions of calcium and phosphate whick resemble the compostion of native bone. Thus, they are frequently used as material for scaffold on the cultivation of osteocytes. In recent studies, calcium phosphates also showed good results on the cultivation of chondrocytes.

    After estimation, we fabricated a dense scaffold by β-tricalcium phosphate(β-TCP). The porosity is only 3vol%, and the pore size is almost zero. Calcium polyphosphate(CPP) can be used to manufacture a porous scaffold with three different surface phases(CPP1 is β phase with quenching,CPP2 is β phase,CPP3 is γ phase), and the porosity is around 35~40vol%. CPP1 has the largest pore size(150um). CPP1 and CPP2 has better mechanical properties. CPP1 has more suitable degradation time.

    On the cultivation of chondrocytes by different methods, we found that suspension culture can improve cell growth and cell matrix secretion, although it reduced cell adhesion slightly. As to the effect of the three different surface phases on the cultivation of chondrocytes, we found that CPP1 is the best in cell adhesion, growth ,and cell matrix secretion. In conclusion, the ceramics of β phase with quenching(CPP1) is fit to be a proper tissue engineering scaffold for articular cartilage.

    On the cultivation of chondrocytes by complex scaffold, we found that complex scaffold can improve cell adhesion and growth, but it reduce cell matrix secretion slightly.

    中文摘要 ……………………………………………………………… Ⅰ 英文摘要 ……………………………………………………………… Ⅱ 謝誌 …………………………………………………………………… Ⅲ 目錄 …………………………………………………………………… Ⅳ 圖目錄 ………………………………………………………………… Ⅶ 表目錄 ………………………………………………………………… Ⅹ 【第一章】緒論 …………………………………………………… 001 【第二章】理論與文獻回顧 ……………………………………… 002 2-1 軟骨組織學 ……………………………………………… 002 2-1-1 軟骨的特性 ………………………………………… 002 2-1-2 軟骨的組成 ………………………………………… 003 2-1-3 軟骨的生長、代謝與死亡 ………………………… 005 2-1-4 軟骨的分類 ………………………………………… 007 2-1-5 細胞間質的組成 …………………………………… 010 2-1-5-1 膠原蛋白 …………………………………… 011 2-1-5-2 蛋白聚醣 …………………………………… 016 2-1-5-3 醣胺素 ……………………………………… 018 2-2 關節軟骨組織學 ………………………………………… 019 2-3 關節軟骨的缺損、病變和修復技術 …………………… 021 2-3-1 關節軟骨的缺損 …………………………………… 021 2-3-2 關節軟骨的病變和修復技術 ……………………… 022 2-3-2-1 骨關節炎 …………………………………… 022 2-3-2-2 纇風濕性關節炎 …………………………… 028 2-4 組織工程簡介 …………………………………………… 029 2-5 生醫陶瓷材料 …………………………………………… 033 2-5-1 生醫陶瓷材料的發展史 …………………………… 033 2-5-2 生醫陶瓷材料的分類 ……………………………… 036 2-5-3 複合式生醫陶瓷材料 ……………………………… 040 2-5-4 鈣磷酸鹽類陶瓷材料對骨組織的影響 …………… 041 2-6 生醫陶瓷材料支架的製備方法 ………………………… 042 【第三章】研究構想 ……………………………………………… 044 【第四章】實驗方法與步驟 ……………………………………… 049 【PART 1】軟骨區支架的製造與評估 …………………………… 049 4-1 支架製造的變因對支架性質的影響 …………………… 049 4-1-1 支架的製造 ………………………………………… 049 4-1-2 支架的測試 ………………………………………… 051 4-2 不同的培養方式對培養軟骨細胞的影響 ……………… 053 4-3 不同性質的支架對培養軟骨細胞的影響 ……………… 054 【PART 2】複合式支架的製造與評估 …………………………… 055 4-4 分隔層的製造 …………………………………………… 055 4-5 複合式支架的製造………………………………………… 056 4-6 複合式支架對培養軟骨細胞的影響 …………………… 057 【第五章】實驗結果與討論 ……………………………………… 058 【PART 1】軟骨區支架的製造與評估 …………………………… 058 5-1 支架製造的變因對支架性質的影響 …………………… 058 5-2 不同的培養方式對培養軟骨細胞的影響 ……………… 067 5-3 不同性質的支架對培養軟骨細胞的影響 ……………… 070 【PART 2】複合式支架的製造與評估 …………………………… 079 5-4 分隔層的製造 …………………………………………… 079 5-5 複合式支架的製造 ……………………………………… 080 5-6 複合式支架對培養軟骨細胞的影響 …………………… 082 【第六章】結論 …………………………………………………… 088 【PART 1】軟骨區支架的製造與評估 …………………………… 088 【PART 2】複合式支架的製造與評估 …………………………… 089 【PART 3】未來工作 ……………………………………………… 091 【第七章】參考文獻 ……………………………………………… 093 【第八章】附註 …………………………………………………… 098 8-1 原子吸收光譜儀分析鈣離子濃度 ……………………… 098 8-2 支架定量分析標準步驟 ………………………………… 099 8-3 支架定性分析標準步驟 ………………………………… 103 8-4 實驗儀器與藥品 ………………………………………… 105 8-4-1 實驗儀器 …………………………………………… 105 8-4-2 實驗藥品 …………………………………………… 107

    [1] 陳皇綺著,「以新型生化反應器培養工程軟骨之研究」,清華大學化學工程學系,碩士論文,民國93年。
    [2] 周正鴻著,「明膠/透明質酸/軟骨素共聚物作為關節軟骨組織工程海綿狀支架之究」,台灣大學醫學工程學研究所,碩士論文,民國92年。
    [3] 章世豪著,「膠原蛋白改質聚α羥酸支架應用於軟骨修復的研究」,中興大學化學工程學系,碩士論文,民國90年。
    [4] 湯正明著,「可降解軟骨細胞支架之製備與評估」,中興大學化學工程學系,碩士論文,民國88年。
    [5] Ross MH, Reith EJ, Romrell LJ. “Histology: a text and atlas 2nd”, Baltimore: Williams&Wilkins, 1989.
    [6] Rhodin J AG. “Histology:a text and atlas”, New York: Oxford University Press, 1974.
    [7] Stevens A, Lowe J著、朱家瑜譯,「人體組織學」第二版,台北市:藝軒,民國92年。
    [8] 張東杰等著,「組織學圖譜」,台北市:藝軒,民國81年。
    [9] Moore KL著、潘人榮譯,「人體胚胎學」第二版,台北市:藝軒,民國90年。
    [10] Damjanov I. “Histopathology: a color atlas and textbook”, Baltimore: Williams&Wilkins, 1996.
    [11] Gartland JJ. “Fundamentals of orthopaedics”, Philadelphia: W.B. Saunders Company, 1987.
    [12] Lanza RP, Langer R, Vacanti J. “Principles of tissue engineering 2nd”, San Diego: Academic Press, 2000.
    [13] 汪建名等著,「陶瓷技術手冊(下)」,台北市:中華民國產業科技發展協進會,民國83年。
    [14] Ciolfi V JD. “Assessment of the early interaction of chondrocytes with different materials”, Canada: University of Toronto, Degree of Master, 2002.
    [15] Woodfield T BF. “Interfacial shear strength criteria for tissue-engineered cartilage anchored to porous synthetic scaffolds”, Canada: University of Toronto, Degree of Master, 2000.
    [16] Mauro FA. “Assessment of biodegradable calcium polyphosphate for bone substitute applications in the healing of the rat calvarium”, Canada: University of Toronto, Degree of Master, 1999.
    [17] Cipera ED. “Solid freeform fabrication of calcium polyphosphate: Material characterization and assessment of processing parameters”, Canada: University of Toronto, Degree of Master, 1999.
    [18] Porter NL. “Development and characterisation of a novel biodegradable IPC biomaterial”, Canada: University of Toronto, Degree of Master, 1998.
    [19] Wells JD. “The processing and in vitro degradation properties of gravity-sintered calcium polyphosphate powders”, Canada: University of Toronto, Degree of Master, 1997.
    [20] Guo L, Li H, Gao X. “Phase transformations and structure characterization of calcium polyphosphate during sintering process”, Journal of Materials Science, 39(23), pp.7041-7047, 2004.
    [21] Jarcho M. “Calcium phosphate ceramics as hard tissue prosthetics”, Clinical orthopaedics and related research, 157, pp.259-278, 1981.
    [22] Klawitter JJ, Hulbert SF. “Application of porous ceramics for the attachment of load bearing internal orthopedic applications”, Biomedical Materials Symposium, 2, pp.161-229, 1971.
    [23] Roy DM, Linnehan SK. “Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange”, Nature, 247(438), pp.220-222, 1974.
    [24] Reed JS, “Principles of ceramics processing 2nd”, New York: Wiley&Sons, 1995.
    [25] Bohner M. “Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements”, Injury, 31(suppl.4), pp.37-47, 2000.
    [26] Huffman EO, Fleming JD. “Calcium polyphosphate: rate and mechanism of its hydrolytic degradation”, Journal of Physical Chemistry, 64, pp.240-244, 1960.
    [27] Pilliar RM, Filiaggi MJ, Wells JD, Grynpas MD, Kandel RA. “Porous calcium polyphosphate scaffolds for bone substitute applications- in vitro characterization”, Biomaterials, 22(9), pp.963-972, 2001.
    [28] Baksh D, Davies JE, Kim S. “Three-dimensional matrixes of calcium polyphosphates support bone growth in vitro and in vivo”, Journal of Materials Science: Materials in Medicine, 9(12), pp.743-748, 1998.
    [29] Grynpas MD, Pilliar RM, Kandel RA, Renlund R, Filiaggi M, Dumitriu M. “Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies”, Biomaterials, 23(9), pp.2063-2070, 2002.
    [30] Porter NL, Pilliar RM, Grynpas MD. “Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics”, Journal of Biomedical Materials Research, 56(4), pp.504-515, 2001.
    [31] Ciolfi V JD, Pilliar RM, McCulloch C AG, Wang SX, Grynpas MD, Kandel RA. “Chondrocyte interactions with porous titanium alloy and calcium polyphosphate substrates”, Biomaterials, 24(26), pp.4761-4770, 2003.
    [32] El Sayegh, TY, Pilliar RM, McCulloch C AG. “Attachment, spreading, and matrix formation by human gingival fibroblasts on porous-structured titanium alloy and calcium polyphosphate substrates”, Journal of Biomedical Materials Research, 61(3), pp.482-492, 2002.
    [33] Waldman SD, Grynpas MD, Pilliar RM, Kandel RA. “Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro”, Journal of Biomedical Materials Research, 62(3), pp.323-330, 2002.
    [34] Waldman SD, Grynpas MD, Pilliar RM, Kandel RA. “The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage”, Journal of Orthopaedic Research, 21(1), pp.132-138, 2003.
    [35] Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. “Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage”, Tissue Engineering, 10(9-10), pp.1323-1331, 2004.
    [36] Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. “Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro”, Journal of Orthopaedic Research, 21(4), pp.590-596, 2003.
    [37] Yang L, Wang J, Hong J, Santerre JP, Pilliar RM. “Synthesis and characterization of a novel polymer-ceramic system for biodegradable composite applications”, Journal of Biomedical Materials Research, 66(3), pp.622-632, 2003.
    [38] Skoog DA, Holler FJ, Nieman TA. “Principles of instrumental analysis”, Philadelphia: Saunders College Publishers, 1998.
    [39] Kim YJ, Sah RL, Doong JY, Grodzinsky AJ. “Fluorometric assay of DNA in cartilage explants using Hoechst 33258”, Analytical Biochemistry, 174, pp.168-176, 1988.
    [40] Enobakhare BO, Bader DL, Lee DA, “Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture, by use of 1,9-dimethylmethylene blue”, Analytical Biochemistry, 243, pp.189-191, 1996.
    [41] Bergman M, Loxley R, “Two improved and simplified methods for the spectrophotometric determination of hydroxyproline”, Analytical Biochemistry, 25(12), pp.1961-1965, 1963.
    [42] 高銘都等著,「病理組織切片技術」,台北市:南山堂,民國90年。
    [43] 劉振軒等著,「組織病理染色技術與圖譜」,苗栗縣竹南鎮:臺灣養豬科學研究所,民國85年。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE