簡易檢索 / 詳目顯示

研究生: 林光華
Lin Kuang-Hua
論文名稱: 陣列式微流體生醫檢測晶片之研製
A Microfluidic Network Chip for Medical Diagnostics
指導教授: 錢景常博士
曾繁根博士
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 96
中文關鍵詞: 微型感測器生醫檢測晶片酵素電化學量測
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之研究主要是設計出一個可同時快速檢測血液中不同物質濃度之微型生醫檢測晶片。 本晶片主要可以分為兩個部分,一個是晶片之微流體系統的設計,另一個是微型感測器的部分。晶片之微流體系統設計的目的是使晶片能夠同時量測同一種檢體中不同物質的含量,而且不會使各種檢驗試劑混合在一起而有產生污染的情況,微流體系統的設計是採用SU-8光阻作為填充試劑的流道,以PDMS材質作為感測器的保護層以及血液的流道。 經由電漿處理將SU-8和PDMS微流道作親水處理後,可以藉由表面張力來填充試劑和運送血液檢體,而不需額外的驅動裝置。 藉由經由設計過的填充流道結構,試劑可以很快速、均勻、定量地被填充至感測位置。 在微型感測器的部分,本研究採用血醣感測器來證實所設計的多重檢測晶片的結構能在實際的環境中作檢測。 感測器依感測面積的大小,分別設計了兩種尺寸,分別為0.57 mm2和0.2 mm2。 血醣感測器採用酵素電化學量測的方式,測試結果得到感測面積較大的血醣感測器的靈敏度為18.58 nA/mM,感測面積較小的血醣感測器的靈敏度為5.42 nA/mM且量測之電流訊號與葡萄糖濃度呈現線性的關係。 因此本研究的所設計的微型生醫檢測晶片可以確實應用於同時對血液中不同成分濃度作檢測。


    目錄 頁數 摘要 …………………………………………………………………. I 誌謝 ……………………………………………………...…….……… II 目錄 …………………………………………………………………… III 符號說明 ………………………………………………………………… IV 圖目錄 ………………………………………………….………………… V 第一章 緒論 1 1.1 前言 …………………………………………………………… 1 1.2 文獻回顧 ………………..……………………………………… 3 1.3 研究方向 ………………..……………………………………… 6 第二章 理論分析 10 2.1 毛細作用 ………………………………….………………… 10 2.2 材料之表面特性 …………………………………..………… 12 2.3 血醣檢測原理 ……………………………………………… 13 第三章 晶片之設計與製程規劃 19 3.1 定量填充流道之研究 …………….…………………………… 19 3.2 平行檢測流道之設計 …………..……………………………… 22 3.3 血醣感測器之設計 …………..………..……………………… 23 3.4 製程之設計 …………………………………………….……… 24 3.4.1 感測電極製作 ……..…….…………………………… 24 3.4.2 試劑填充流道製作 ……..…………….……………… 26 3.4.3 檢體流道製作 …………………………...…………… 27 3.5 葡萄糖氧化脢之固定 ……………………………...………… 29 3.6 SU-8光阻的材料特性與製程條件 ……………………..… 30 3.6.1 SU-8光阻之材料特性 ……….……….…………… 30 3.6.2 SU-8光阻之製程條件 ……..……………………… 31 3.6.3 SU-8光阻表面之親水處理 ………..……………… 33 第四章 結果分析 53 4.1 製程結果分析 …………....…………………….……..……… 53 4.1.1 填充流道之製作結果 ………….....….….…………… 53 4.1.2 感測器之製作結果 ……..…………….……………… 54 4.1.3 檢測晶片之製作結果 ………..….….……...………… 55 4.2 填充流道之測試 …………..…………………………..……… 57 4.3 血醣感測計之測試 …………..……………….………………… 60 第五章 結論與未來展望 90 5.1 結論 …………….………………….………………………… 90 5.2 未來展望 ……………………..……………………………… 91 參考文獻 92

    [1] P. J. Hesketh, S. Zivanovic, Y. Ming, S. Park, S. Svojanovsky, J. Cunneen, S. Caraffini, J. G. Boyd, J. R. Stetter, S. M. Lunte, and G. S. Wilson, “Microfabricated biosensors and microsystems,” Proceedings of the 21st international conference on Microelectronics, NIS, Yugoslavia, September, 1997, pp. 63-69.
    [2] I. R. Lauks, “Microfabricated biosensors and microanalytical systems for blood analysis,” Accounts of Chemical Research, vol. 31, no. 5, pp. 317-324, 1998.
    [3] J. H. Kim, B. G. Kim, E. Yoon, and C. H. Han, “A New monolithic micro biosensor for blood analysis,” Proceeding of the IEEE MEMS’01 Workshop, Interlaken, Switzerland, January, 2001, pp. 443-446.
    [4] M. Seki, R. Aoyama, J. W. Hong, T. Fujii, and I. Endo, “Multiple diagnostic analyses by enzymatic and chemical reaction on a PDMS microchip,” 1st Conference Annual International IEEE-EMBS Specia Topic Conference on Microtechnologies in Medicine and Biology, Lyon, France, October 12-14, 2000, pp. 21 -24.
    [5] S. C. Jakeway, A. J. de Melto, and E. L. Russel, “Miniaturized total analysis systems for biological analysis,” Journal of Analytical Chemistry, Vol. 366, pp. 525-539, 2000.
    [6] N. Tinkilic, O. Cubuk, and I. Isildak, “Glucose and urea biosensors based on all solid-state PVC-NH2 membrane electrodes,” Analytica Chimica Acta, Vol. 452, pp. 29-34, 2002.
    [7] H. Suzuki, T. Hirakawa, S. Sasaki, and I. Karube, “An integrated module for sensing pO2, pCO2, and pH,” Analytica Chimica Acta, Vol. 405, pp. 57-65, 2000.
    [8] H. Suzuki, H. Arakawa, and I. Karube, “Fabrication of a sensing module using micromachined biosensors,” Biosensors and Bioelectronics, Vol. 16, pp. 725-733, 2001.
    [9] O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sensors and Actuators A, vol. 78, pp. 149-159, 1999.
    [10] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Journal of Analytical Chemistry, vol. 70, No. 23, pp. 4974-4984, 1998.
    [11] J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Journal of Analytical Chemistry, vol. 72, no. 14, pp. 3158-3164, 2000.
    [12] B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer, Microelectromechanical Systems,” Journal of Microelectromechanical Systems, vol. 9, pp. 76-81, 2000.
    [13] K. Hosokawa, R. Maeda, “Low-cost technology for high-density microvalve arrays using polydimethylsiloxane (PDMS),” Proceeding of the IEEE MEMS’01 Workshop, Interlaken, Switzerland, January, 2001, pp. 531-534.
    [14] 黃鴻鈞, 血糖量測與胰島素注射裝置作業技術規範. 初版, 教育部, 台北市, 台灣, 1999.
    [15] B. Eggins, Biosensors : an Introduction. John Wiley and Sons, Inc., New York, USA, 1996.
    [16] H. U. Bergmeyer, and E. Bernt, Mehtods of Enzymatic Analysis. 2nd Ed., New York, NY: Academic Press, 1974.
    [17] T. Matsumoto, M. Furusawa, H. Fujiwara, Y. Matsumoto, N. Ito, “A micro-planar amperometric glucose sensor unsusceptible to interference species,” The 9th International Conference on Solid-State Sensors and Actuators (Transducers ’97), Chicago, U.S.A., June, 1997, pp. 903 -906.
    [18] O. T.-C. Chen, S. Wang, C. W. Lin, and Y. C. Lu, “A medical microsensor for blood glucose monitoring,” Proceedings of 1997 IEEE International Symposium on Circuits and Systems (ISCAS '97), Hong Kong, Vol.4, June, 1997, pp. 2761 -2764.
    [19] W. E. Morf and N. F. de Rooij, “Performance of amperometric sensors based on multiple microelectrode arrays,” Sensors & Actuators B, Vol. 44, pp. 538-541, 1997.
    [20] H. Frebel, G. c. Chemnitius, K. Cammann, R. Kakerow, M. Rospect, and W. Mokwa, “Multianalyte sensor for the simultaneous determination of glucose, L-lactate and uric acid based on a microelectrode array”, Sensors and actuators B, vol. 43, pp. 87-
    [21] Alice J. Cunningham, Introduction to Bioanalytical Sensor. John Wiley & Sons, 1998.
    [22] F. M. White, Fluid Mechanics. 2nd Ed., New York, NY:McGraw-Hill, 1986.
    [23] A. Torkkeli, J. Saarilahti, A. Haara, H. Harma, T. Soukka, and P. Tolonen, “Electrostatic transportation of water droplets on superhydrophobic surfaces,” Proceeding of the IEEE MEMS’01 Workshop, Interlaken, Switzerland, January, 2001, pp. 475 –478.
    [24] 謝魁鵬,魏耀揮, 最新生物化學實驗. 台北市, 台灣, 藝軒, 1985.
    [25] F. G. Tseng, I. D. Yang, K. H. Lin, K. T. Ma, M. C. Lu and C. C. Chieng, “Fluid filling into microfabricated reservoirs,” The 11th International Conference on Solid-State Sensors and Actuators (Transducers ’01), Munich, Germany, June 10-14, 2001, pp.1518-1521.
    [26] F. G. Tseng, I. D. Yang, K. H. Lin, Y. T. Tseng, and C. C. Chieng, “Shape effect on fluid filling for microfabricated reservoir”, μTAS 2001, Monterey, CA., U.S.A., October, 2001.
    [27] R. Aoyama, M. Seki, J. W. Hong, T. Fujii, and I. Endo, “Novel liquid injection method with wedge-shaped microchannel on a PDMS microchip system for diagnostic analyses,” The 11th International Conference on Solid-State Sensors and Actuators (Transducers ’01), Munich, Germany, June 10-14, 2001, pp. 1232-1235.
    [28] F. G. Tseng, K. H. Lin and C. C. Chieng, “A Novel Fluidic Network System for Enzyme Batch-immobilization and Blood Sensing,” Proceedings of IEEE Sensors 2002 conference, Orlando, Florida, USA, June 11-14, 2002, pp. 12-14,.
    [29] 楊啟榮, 羅國軒, 黃奇聲, 強玲英, “SU-8厚膜光阻於微系統UV-LIGA製程的應用,” 科儀新知, 第二十卷, 第五期, pp. 45-56, 1999.
    [30] 何邦慶, “淺談深紫外光光阻劑,” 化工資訊月刊, 第十一卷, 第十期, pp. 1-17, 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE