簡易檢索 / 詳目顯示

研究生: 游孟涵
Yu, Meng-Han
論文名稱: 馬來醯亞胺添加劑結構對於鋰離子電池性能影響之研究
Structural Study of Maleimide-based Additives for Lithium Ion Batteries
指導教授: 萬其超
口試委員: 楊長榮
王復民
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 93
中文關鍵詞: 馬來醯亞胺鋰離子電池添加劑
外文關鍵詞: Maleimide, Lithium ion battery, additives
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中,我們將探討互為同分異構物(於苯環上的位置各別為鄰位、間位、對位)的馬來醯亞胺添加劑,其不同結構對於鋰離子電池中的鈍化層及其電池性能的影響。
    我們使用循環伏安法發現此種添加劑的還原電位早於電池中其它電解液成分,接著使用核磁共振光譜再進一步發現馬來醯亞胺分子經過還原反應後的產物仍維持和苯環上的連接位置,且馬來醯亞胺本身的碳碳雙鍵經過還原之後仍存在,而本研究也提出其可能的產物結構。在交流阻抗分析中發現,立體障礙會影響鈍化層介面阻抗大小。由X光光電子光譜(XPS)發現鈍化層內部的無機成分中的氟化鋰(LiF)含量在加入馬來醯亞胺添加劑之後可以有效減少。
    最後,在電池性能表現中,添加劑在後續1C/1C電流的100圈循環充電中,測試初期添加劑結構上的差異性主要表現在放電電容量上的損失。隨著圈數增加,其含有添加劑的電池之放電電容量趨於穩定不再減少。其中,原先分子立體障礙較大的添加劑表現更勝過無添加劑者。


    In this study, we chose maleimide-based additives which are isomer for each other (the maleimide substituent on the benzene are para-, meta-, and ortho- position) to investigate the structural effect in SEI and the battery performance.
    First, the cyclic voltammetry (CV) measurement showed that the reduction potential of maleimide-based additive was prior to other components. Then, the structure of maleimide product was further found retaining the same connected sites to benzene and keeping C=C configuration after reduction based on the results of nuclear magnetic resonance (NMR). The possible product structure for different maleimide-based additive was proposed in this study. In the analysis of impedance spectra, the resistance of SEI was influenced by steric hindrance of the additive. The X-ray photoelectron spectroscopy (XPS) demonstrated the content of a specific inorganic compound, LiF, was decreased due to the existence of maleimide-based additive in the electrolyte.
    Finally, in the battery performance test, the structural effect of additive showed remarkable divergence in discharge capacity loss in the initial 1C/1C cycle test. As the cycle proceeded, the discharge capacity of batteries with maleimide additives reached a steady state and did not reduce anymore. Besides, the performance of the additive with large steric hindrance even excelled the one without any additive.

    摘要 i ABSTRACT ii 誌謝 iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 INTRODUCTION 1 1-1 Development Background of Lithium Batteries 2 1-2 Liquid Electrolytes 9 1-2.1 Solvents 10 1-2.2 Lithium Salts 15 1-2.3 Electrolyte Additives 17 1-3 Solid Electrolyte Interphase on Anode 21 1-3.1 Components of SEI 23 1-3.2 Morphology of SEI 26 1-3.3 Influence of SEI on Battery Performance 28 1-4 Factors Affecting SEI 29 1-4.1 Type and Pretreatment of Carbon 29 1-4.2 Electrolyte Composition 31 1-4.3 Additives 38 1-5 Motivation 46 Chapter 2 EXPERIMENTAL 48 2-1 Material of Thin Film Battery 48 2-1.1 Electrode, Separator and Electrolyte 48 2-2 Assembly The Thin Film Cell 49 2-2.1 3-Electrode Li/C Half-Cell (for CV) 49 2-2.2 3-Electrode Full Cell (for impedance) 50 2-2.3 2-Electrode Full Cell (for performance) 51 2-3 Test of The Cell 51 2-3.1 Cyclic Voltammetry (CV) 51 2-3.2 Electrochemical Impedance Spectra (EIS) 51 2-3.3 Formation Performance of Thin Film Batteries 51 2-3.4 Cycle Performance of Thin Film Batteries 52 2-4 The Analysis of Chemical Composition 52 2-4.1 Nuclear Magnetic Resonance (NMR) Spectroscopy 52 2-4.2 X-ray Photoelectron Spectroscopy (XPS) 53 Chapter 3 RESULTS AND DISCUSSION 54 3-1 The Cyclic Voltammetry Analysis 54 3-2 The H1-NMR Analysis of Mi-based Additives 57 3-3 The Impedance Analysis 65 3-4 The Analysis of XPS 73 3-5 The Battery Performance 80 Chapter 4 CONCLUSIONS 83 Chapter 5 FUTURE WORK 85 Chapter 6 REFERENCES 86

    1. Eda N. and Ohta A., Ch.2 in Energy Storage Systems for Electronics, T. Osaka and M. Datta, Eds., New Trends in Electrochemical Technology Series, Gordon and Breach Science Publishers, Amsterdam, Netherland (2000).
    2. Owen, J.R., Rechargeable lithium batteries. Chemical Society Reviews, 1997. 26: p. 259-267.
    3. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
    4. Vincent, C.A., Lithium batteries: a 50-year perspective, 1959-2009. Solid State Ionics, 2000. 134(1-2): p. 159-167.
    5. Whittingham, M.S., Insertion electrodes as SMART materials: the first 25 years and future promises. Solid State Ionics, 2000. 134(1-2): p. 169-178.
    6. Lee, H.-H., Studies of Solid Electrolyte Interphase on Carbon Surface in Lithium-ion Batteries. 2004, Taiwan: Nation Tsing Hua University.
    7. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems---The Solid Electrolyte Interphase Model. Journal of the Electrochemical Society, 1979. 126(12): p. 2047-2051.
    8. Megahed, S. and B. Scrosati, Lithium-ion rechargeable batteries. Journal of Power Sources, 1994. 51(1-2): p. 79-104.
    9. Dominey L. A., Ch.4 in Lithium Batteries. New Materials, Developments and Perspectives, G. Pistoia, Ed., Elsevier, Amsterdam (1994).
    10. Bretherick, L., Solvated metal perchlorates. Chemical & engineering news 1990. 68.
    11. Penton D. E., Parker J. M., and Wright P. V., “Complexes of alkali metal ions with poly(ethylene oxide)”, 14, 589 (1973). Polymer.
    12. Armand M. B., Chabagno J. M., and Duclot M., Ext Abstr., Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, 20-22 Sep. (1978).
    13. Murata, K., S. Izuchi, and Y. Yoshihisa, An overview of the research and development of solid polymer electrolyte batteries. Electrochimica Acta, 2000. 45(8-9): p. 1501-1508.
    14. Song, J.Y., Y.Y. Wang, and C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources, 1999. 77(2): p. 183-197.
    15. A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U. S. Patent No. 5,418,091 (1995).
    16. Gozdz A. S., Schmutz C. N., and Tarascon J. M., “Rechargeable lithium intercalation battery with hybrid polymeric electrolyte”, U. S. Patent No. 5,296,318 (1994).
    17. Suzuki S., “Toshiba battery new products for cellular phone, personal computer and power tools”, in Proceedings of 2000 (4th) Taipei Battery Forum, 25-26 Apr. (2000).
    18. Guyomard D., Ch.9 in Energy Storage Systems for Electronics, T. Osaka and M. Datta, Eds., New Trends in Electrochemical Technology Series, Gordon and Breach Science Publishers, Amsterdam, Netherland (2000).
    19. Kinoshita K., Ch.8 in Energy Storage Systems for Electronics, T. Osaka and M. Datta, Eds., New Trends in Electrochemical Technology Series, Gordon and Breach Science Publishers, Amsterdam, Netherland (2000).
    20. Barthel J. and Gores H. J., Ch.7 in Handbook of Battery Materials, J. O. Besenhard, Ed., Wiley-VCH, Weinheim (1999).
    21. Kawamura, T., S. Okada, and J.-i. Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. Journal of Power Sources, 2006. 156(2): p. 547-554.
    22. 竹原善一郎, Ch.6 in 高密度リチウム二次電池-その反應、材料と技術開發, 株式會社テクノツステム (1998).
    23. Aurbach, D., et al., On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999. 45(1-2): p. 67-86.
    24. Aurbach, D., et al., New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. Journal of Power Sources, 1999. 81-82: p. 95-111.
    25. Winter M., Besenhard J. O., Spahr M. E., and Novak P., “Insertion electrode materials for rechargeable lithium batteries”, Adv. Mater., 10, 725-763 (1998).
    26. Yang, C.R., Y.Y. Wang, and C.C. Wan, Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. Journal of Power Sources, 1998. 72(1): p. 66-70.
    27. Arora, P., R.E. White, and M. Doyle, Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries. Journal of the Electrochemical Society, 1998. 145(10): p. 3647-3667.
    28. Kobayashi T., Ch.5 in Report No.2: Materials for New Energy Technologies Focusing on Fuel Cells, Secondary Batteries and Hydrogen Utilization (Update-I), Japanese R&D Trend Analysis, KRI, Japan (1999).
    29. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    30. Aurbach, D., et al., The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable `Rocking-Chair' Type Batteries. Journal of the Electrochemical Society, 1994. 141(3): p. 603-611.
    31. Ein-Eli, Y., S.R. Thomas, and V.R. Koch, New Electrolyte System for Li-Ion Battery. Journal of the Electrochemical Society, 1996. 143(9): p. L195-L197.
    32. Ein-Eli, Y., S.R. Thomas, and V.R. Koch, The Role of SO[sub 2] as an Additive to Organic Li-Ion Battery Electrolytes. Journal of the Electrochemical Society, 1997. 144(4): p. 1159-1165.
    33. Gan H. and Takeuchi E. S., “Dicarbonate additives for nonaqueous electrolyte rechargeable cells”, U.S. Patent No. 6,174,629 (2001).
    34. Coowar, F., et al., Improving the performance of graphite anodes in rechargeable lithium batteries. Journal of Power Sources, 1998. 75(1): p. 144-150.
    35. Contestabile, M., et al., A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells. Journal of Power Sources, 2003. 119-121: p. 943-947.
    36. Oesten, R., U. Heider, and M. Schmidt, Advanced electrolytes. Solid State Ionics, 2002. 148(3-4): p. 391-397.
    37. Zhang, S.S., K. Xu, and T.R. Jow, A Thermal Stabilizer for LiPF[sub 6]-Based Electrolytes of Li-Ion Cells. Electrochemical and Solid-State Letters, 2002. 5(9): p. A206-A208.
    38. Peled E., Golodnitsky D., and Penciner J., Ch.6 in Handbook of Battery Materials, J. O. Besenhard, Ed., Wiley-VCH, Weinheim (1999).
    39. Aurbach, D., et al., Failure and Stabilization Mechanisms of Graphite Electrodes. The Journal of Physical Chemistry B, 1997. 101(12): p. 2195-2206.
    40. Kang, S.H., et al., Investigating the solid electrolyte interphase using binder-free graphite electrodes. Journal of Power Sources, 2008. 175(1): p. 526-532.
    41. Besenhard, J.O., et al., Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995. 54(2): p. 228-231.
    42. Bryngelsson, H., et al., How dynamic is the SEI? Journal of Power Sources, 2007. 174(2): p. 970-975.
    43. Edström, K., M. Herstedt, and D.P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. Journal of Power Sources, 2006. 153(2): p. 380-384.
    44. Aurbach, D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89(2): p. 206-218.
    45. Jeong, S.-K., et al., Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution. Journal of the Electrochemical Society, 2001. 148(9): p. A989-A993.
    46. Verma, P., P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6332-6341.
    47. Ein-Eli, Y., et al., The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition. Electrochimica Acta, 1994. 39(17): p. 2559-2569.
    48. Aurbach, D., et al., The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency. Journal of Electroanalytical Chemistry, 1992. 339(1-2): p. 451-471.
    49. Aurbach, D., et al., On the role of water contamination in rechargeable Li batteries. Electrochimica Acta, 1999. 45(7): p. 1135-1140.
    50. Moshkovich, M., et al., The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. Journal of Electroanalytical Chemistry, 2001. 497(1-2): p. 84-96.
    51. Ismail, I., et al., XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes. Electrochimica Acta, 2001. 46(10-11): p. 1595-1603.
    52. Schechter, A., D. Aurbach, and H. Cohen, X-ray Photoelectron Spectroscopy Study of Surface Films Formed on Li Electrodes Freshly Prepared in Alkyl Carbonate Solutions. Langmuir, 1999. 15(9): p. 3334-3342.
    53. Aurbach, D., et al., X-ray Photoelectron Spectroscopy Studies of Lithium Surfaces Prepared in Several Important Electrolyte Solutions. A Comparison with Previous Studies by Fourier Transform Infrared Spectroscopy. Langmuir, 1996. 12(16): p. 3991-4007.
    54. Kanamura, K., et al., X-Ray Photoelectron Spectroscopic Analysis and Scanning Electron Microscopic Observation of the Lithium Surface Immersed in Nonaqueous Solvents. Journal of the Electrochemical Society, 1994. 141(9): p. 2379-2385.
    55. Aurbach, D., et al., Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. Journal of Power Sources, 1997. 68(1): p. 91-98.
    56. Winter M., “An overview on SEI formation processes of lithium battery anodes in organic solvent based electrolyte”, in C4, Proceedings of 2003 Taipei Power Forum, Taipei, Taiwan, 1-3 Dec. (2003).
    57. Aurbach, D., et al., The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries. Journal of the Electrochemical Society, 1995. 142(9): p. 2882-2890.
    58. Yoshio M., “Materials for Lithium-ion Batteries”, in C1, Proceedings of 2002 (6th) Taipei Power Forum, Taipei, Taiwan, 23-25 Apr. (2002).
    59. Orsini, F., et al., In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries. Journal of Power Sources, 1998. 76(1): p. 19-29.
    60. Geniès, S., et al., SEM and FT-IR characterization of the passivation film on lithiated mesocarbon fibers. Synthetic Metals, 1998. 93(2): p. 77-82.
    61. Naji, A., et al., TEM characterization of the passivating layer formed during the reduction of graphite electrodes in selected electrolytes. Journal of Power Sources, 1999. 81-82: p. 207-211.
    62. Zane, D., A. Antonini, and M. Pasquali, A morphological study of SEI film on graphite electrodes. Journal of Power Sources, 2001. 97-98: p. 146-150.
    63. Zaghib, K., G. Nadeau, and K. Kinoshita, Effect of Graphite Particle Size on Irreversible Capacity Loss. Journal of the Electrochemical Society, 2000. 147(6): p. 2110-2115.
    64. Yazami, R. and Y.F. Reynier, Mechanism of self-discharge in graphite-lithium anode. Electrochimica Acta, 2002. 47(8): p. 1217-1223.
    65. Novák, P., et al., Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries. Journal of Power Sources, 2000. 90(1): p. 52-58.
    66. Ogihara, N., et al., Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries. Electrochimica Acta, 2006. 52(4): p. 1713-1720.
    67. Churikov, A.V., Transfer mechanism in solid-electrolyte layers on lithium: influence of temperature and polarization. Electrochimica Acta, 2001. 46(15): p. 2415-2426.
    68. Park, G., et al., The important role of additives for improved lithium ion battery safety. Journal of Power Sources, 2009. 189(1): p. 602-606.
    69. Zhang, Z., D. Fouchard, and J.R. Rea, Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. Journal of Power Sources, 1998. 70(1): p. 16-20.
    70. Winter, M., P. Novak, and A. Monnier, Graphites for Lithium-Ion Cells: The Correlation of the First-Cycle Charge Loss with the Brunauer-Emmett-Teller Surface Area. Journal of the Electrochemical Society, 1998. 145(2): p. 428-436.
    71. Zheng, T., A.S. Gozdz, and G.G. Amatucci, Reactivity of the Solid Electrolyte Interface on Carbon Electrodes at Elevated Temperatures. Journal of the Electrochemical Society, 1999. 146(11): p. 4014-4018.
    72. Peled, E., et al., Effect of carbon substrate on SEI composition and morphology. Electrochimica Acta, 2004. 50(2-3): p. 391-395.
    73. Scott, M.G., A.H. Whitehead, and J.R. Owen, Chemical Formation of a Solid Electrolyte Interface on the Carbon Electrode of a Li-Ion Cell. Journal of the Electrochemical Society, 1998. 145(5): p. 1506-1510.
    74. Ein-Eli, Y. and V.R. Koch, Chemical Oxidation: A Route to Enhanced Capacity in Li-Ion Graphite Anodes. Journal of the Electrochemical Society, 1997. 144(9): p. 2968-2973.
    75. Pan, Q., H. Wang, and Y. Jiang, Covalent modification of natural graphite with lithium benzoate multilayers via diazonium chemistry and their application in lithium ion batteries. Electrochemistry Communications, 2007. 9(4): p. 754-760.
    76. Pan, Q., H. Wang, and Y. Jiang, Natural graphite modified with nitrophenyl multilayers as anode materials for lithium ion batteries. Journal of Materials Chemistry, 2007. 17(4): p. 329-334.
    77. Liu, Z., A. Yu, and J.Y. Lee, Modifications of synthetic graphite for secondary lithium-ion battery applications. Journal of Power Sources, 1999. 81-82: p. 187-191.
    78. Zheng, T., et al., Lithium Insertion in High Capacity Carbonaceous Materials. Journal of the Electrochemical Society, 1995. 142(8): p. 2581-2590.
    79. Ohzuku, T., Y. Iwakoshi, and K. Sawai, Formation of Lithium-Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. Journal of the Electrochemical Society, 1993. 140(9): p. 2490-2498.
    80. Novák, P., et al., In situ investigation of the interaction between graphite and electrolyte solutions. Journal of Power Sources, 1999. 81-82: p. 212-216.
    81. Suzuki, K., T. Hamada, and T. Sugiura, Effect of Graphite Surface Structure on Initial Irreversible Reaction in Graphite Anodes. Journal of the Electrochemical Society, 1999. 146(3): p. 890-897.
    82. Shin, J.-S., et al., Effect of Li2CO3 additive on gas generation in lithium-ion batteries. Journal of Power Sources, 2002. 109(1): p. 47-52.
    83. Yoshida, H., et al., Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging. Journal of Power Sources, 1997. 68(2): p. 311-315.
    84. Kumai, K., et al., Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. Journal of Power Sources, 1999. 81-82: p. 715-719.
    85. Ohta, A., et al., Relationship between carbonaceous materials and electrolyte in secondary lithium-ion batteries. Journal of Power Sources, 1995. 54(1): p. 6-10.
    86. Bar-Tow, D., E. Peled, and L. Burstein, A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries. Journal of the Electrochemical Society, 1999. 146(3): p. 824-832.
    87. Peled, E., et al., Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. Journal of Power Sources, 2001. 97-98: p. 52-57.
    88. B. Simon, J.P. Boeuve, U.S. Patent 5,626,981 (1997).
    89. Aurbach, D., et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta, 2002. 47(9): p. 1423-1439.
    90. Aurbach, D., et al., Vinylene Carbonate and Li Salicylatoborate as Additives in LiPF3(CF2CF3)3 Solutions for Rechargeable Li-Ion Batteries. Journal of the Electrochemical Society, 2004. 151(1): p. A23-A30.
    91. Chen, G., et al., Anodic Polymerization of Vinyl Ethylene Carbonate in Li-Ion Battery Electrolyte. Electrochemical and Solid-State Letters, 2005. 8(7): p. A344-A347.
    92. Sasaki, T., et al., Suppression of an Alkyl Dicarbonate Formation in Li-Ion Cells. Journal of the Electrochemical Society, 2005. 152(10): p. A2046-A2050.
    93. Hu, Y., et al., Effect of Morphology and Current Density on the Electrochemical Behavior of Graphite Electrodes in PC-Based Electrolyte Containing VEC Additive. Electrochemical and Solid-State Letters, 2004. 7(11): p. A442-A446.
    94. Jyh-Tsung, L., et al., Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion batteries. Journal of the Electrochemical Society, 2005. 152(Copyright 2006, IEE): p. 1837-43.
    95. Abe, K., et al., Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochimica Acta, 2004. 49(26): p. 4613-4622.
    96. Kitakura T., Abe K. and Yoshitake H., 11th International Meeting on Lithium Batteries Monterey, CA, June 23–28 (2002).
    97. Santner, H.J., et al., Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. Journal of Power Sources, 2003. 119-121: p. 368-372.
    98. Komaba, S., et al., Impact of 2-Vinylpyridine as Electrolyte Additive on Surface and Electrochemistry of Graphite for C/LiMn[sub 2]O[sub 4] Li-Ion Cells. Journal of the Electrochemical Society, 2005. 152(5): p. A937-A946.
    99. Ufheil, J., et al., Maleic anhydride as an additive to [gamma]-butyrolactone solutions for Li-ion batteries. Electrochimica Acta, 2005. 50(7-8): p. 1733-1738.
    100. Yoshino A., Proceedings of the 3rd Hawaii Battery Conference ARAD Enterprises, Hilo, HI, January 3 (2001), p. 449.
    101. Yoshino A., Proceedings of the 4th Hawaii Battery Conference ARAD Enterprises, Hilo, HI, January 8 (2002), p. 102.
    102. Gan H., Takeuchi E.S., U.S. Patent 6,495,285 (2002).
    103. Yamada M., Usami K., Awano N., Kubota N., Takeuchi Y., U.S. Patent 6,872,493 (2005).
    104. Schroeder, G., et al., Vinyl tris-2-methoxyethoxy silane - A new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochemistry Communications, 2006. 8(4): p. 523-527.
    105. Gan H., Takeuchi E.S., U.S. Patent 6,027,827 (2000).
    106. Mogi, R., et al., Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate. Journal of the Electrochemical Society, 2002. 149(12): p. A1578-A1583.
    107. Shu, Z.X., et al., Use of Chloroethylene Carbonate as an Electrolyte Solvent for a Lithium Ion Battery Containing a Graphitic Anode. Journal of the Electrochemical Society, 1995. 142(9): p. L161-L162.
    108. Shu, Z.X., et al., Use of Chloroethylene Carbonate as an Electrolyte Solvent for a Graphite Anode in a Lithium-Ion Battery. Journal of the Electrochemical Society, 1996. 143(7): p. 2230-2235.
    109. McMillan, R., et al., Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999. 81-82: p. 20-26.
    110. Besenhard, J.O., et al., Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon--lithium electrodes. Journal of Power Sources, 1993. 44(1-3): p. 413-420.
    111. Zhuang, G.V., et al., A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy. Electrochemical and Solid-State Letters, 2005. 8(9): p. A441-A445.
    112. Smart M.C., Ratnakumar B.V. and Surampudi S., 196th ECS Meeting Abstracts Honolulu, Hawaii, October 17–22 (1999) (Abstract No. 333).
    113. Levi, M.D., et al., The effect of dimethyl pyrocarbonate on electroanalytical behavior and cycling of graphite electrodes. Journal of the Electrochemical Society, 2004. 151(6): p. A848-A856.
    114. Choi, Y.-K., et al., Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries. Journal of Power Sources, 2002. 104(1): p. 132-139.
    115. Lee, J.-T., et al., Effects of Aromatic Esters as Propylene Carbonate-Based Electrolyte Additives in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2005. 152(9): p. A1837-A1843.
    116. Wang, C., et al., Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system. Journal of Power Sources, 1998. 74(1): p. 142-145.
    117. Gong J.B., Tsumura T., Nakamura H., Yoshio M., Yoshitake H. and Abe T., 202nd ECS Meeting Abstracts Salt Lake City, UT, October 20–24 (2002) (Abstract No. 200).
    118. Jow T.R., Zhang S.S., Xu K., Ding M.S., U.S. Patent 6,905,762 (2005).
    119. Li, W., et al., Additives for Stabilizing LiPF6-Based Electrolytes Against Thermal Decomposition. Journal of the Electrochemical Society, 2005. 152(7): p. A1361-A1365.
    120. Hiroi O., Yoshida Y., Yoshioka S., Shiota H., Aragane J., Aihara D.T., Nishimura T., Kise M., Urushibata H., and Adachi H., U.S. Patent 6, 540 (2001).
    121. Wang, X., et al., New Additives to Improve the First-Cycle Charge--Discharge Performance of a Graphite Anode for Lithium-Ion Cells. Journal of the Electrochemical Society, 2005. 152(10): p. A1996-A2001.
    122. Wang, F.-M., et al., Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries. Electrochimica Acta, 2009. 54(12): p. 3344-3351.
    123. Jan, Y.-S., Ho, L.-C., Li, S.-M., Hsieh, T.-T., Chuan, W.-Y, U.S. Patent 0,121,356 (2006).
    124. Inaba, M., et al., Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate. Journal of Power Sources, 1997. 68(2): p. 221-226.
    125. Abe, K., et al., Functional electrolytes: Synergetic effect of electrolyte additives for lithium-ion battery. Journal of Power Sources, 2008. 184(2): p. 449-455.
    126. Curliss, D.B., B.A. Cowans, and J.M. Caruthers, Cure Reaction Pathways of Bismaleimide Polymers:  A Solid-State 15N NMR Investigation. Macromolecules, 1998. 31(20): p. 6776-6782.
    127. Grenier-Loustalot, M.-F., et al., Synthesis, mechanism and kinetics of radical polymerization of bismaleimide-type telechelic oligomers in solvent and in the solid state. Polymer, 1993. 34(18): p. 3848-3859.
    128. Zhang, X., et al., Electrochemical and Infrared Studies of the Reduction of Organic Carbonates. Journal of the Electrochemical Society, 2001. 148(12): p. A1341-A1345.
    129. Lee, J.-T., Y.-W. Lin, and Y.-S. Jan, Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes. Journal of Power Sources, 2004. 132(1-2): p. 244-248.
    130. Grossman, R.B., Ch.5 in The Art of Writing Reasonable Organic Reaction Mechanisms. 2003: Springer-Verlag New York.
    131. Song, J.Y., et al., Two- and three-electrode impedance spectroscopy of lithium-ion batteries. Journal of Power Sources, 2002. 111(2): p. 255-267.
    132. Zhang, S.S., K. Xu, and T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006. 51(8-9): p. 1636-1640.
    133. Zhang, S.S., K. Xu, and T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta, 2004. 49(7): p. 1057-1061.
    134. Ota, H., et al., Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode. Journal of the Electrochemical Society, 2004. 151(10): p. A1659-A1669.
    135. Andersson, A.M. and K. Edstrom, Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite. Journal of the Electrochemical Society, 2001. 148(10): p. A1100-A1109.
    136. Tasaki, K., et al., Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents. Journal of the Electrochemical Society, 2009. 156(12): p. A1019-A1027.
    137. Andersson, A.M., et al., The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes. Electrochimica Acta, 2002. 47(12): p. 1885-1898.
    138. El Ouatani, L., et al., The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries. Journal of the Electrochemical Society, 2009. 156(2): p. A103-A113.
    139. Li, W. and B.L. Lucht, Inhibition of the Detrimental Effects of Water Impurities in Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2007. 10(4): p. A115-A117.
    140. Xu, M., et al., Experimental and Theoretical Investigations of Dimethylacetamide (DMAc) as Electrolyte Stabilizing Additive for Lithium Ion Batteries. The Journal of Physical Chemistry C, 2011. 115(13): p. 6085-6094.
    141. Vetter, J., et al., Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005. 147(1-2): p. 269-281.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE