簡易檢索 / 詳目顯示

研究生: 朱家宏
Chia-Hong Chu
論文名稱: 結合高分子發光二極體以及高分子光偵測器來達成高分子紅外線距離感測器
Infrared polymer proximity sensor by the combination of a polymer light-emitting diode and a polymer photodetector
指導教授: 洪勝富
Sheng-Fu Horng
夢心飛
Hsin-Fei Meng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 高分子機器人距離感測紅外光發光二極體光偵測器
外文關鍵詞: polymer, robot, proximity sensor, infrared, PLED, photodetector
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機高分子光電元件由於具有成本低廉、製成簡易、可大面積並成膜於軟性基板等優勢。正好符合智能化機器人的感測皮膚之需求。傳統的無機紅外線距離感測元件並無法在軟性基板上以陣列方式製程。相反的,對於有機發光二極體以及有機光偵測元件而言,在軟性基板上形成高密度矩陣將是很容易達成的事。
    本論文之高分子距離感測器是結合了高分子發光二極體以及高分子光感測器,並且操作在波長為700nm到800nm的近紅外光範圍。紅外光的發射是將可見光高分子發光二極體結合ㄧ紅外光轉換膜將可見光轉換為紅外光,轉換模是由PVP和紅外線染料混合而成。而光偵測器是採用P3HT和PCBM混合的donor-acceptor系統,藉由吸收紅外光而激發donor(P3HT)的共價帶上的電子躍遷至acceptor(PCBM)的傳導帶而行成charge-transfer exciton,透過此機制來吸收被偵測物反射回來的紅外光並產生光電流。
    在室內環境下,對於不同顏色以及表面粗糙度的偵測物做距離量測,而偵測距離會隨著偵測物的顏色以及表面粗糙度而有所變化。當發光二極體偏壓在9V時,最長偵測距離可達19cm。最後並藉由一具有放大訊號且有帶通濾波功能的電路來處理所偵測的訊號,提升元件的應用價值。


    Organic optoelectronic devices based on conjugated polymers attract a lot of interests in the past decade due to the possibilities of low cost large-area solution process on flexible surfaces.Such unique properties are highly desirable for the development of sensitive skin for a moving machine like robot or car. The conventional proximity sensor based on inorganic near infrared light-emitting diodes and photo-detectors can not be integrated by monolithic fabrication as an array on flexible substrate which is essential for robots and other machine surfaces. Contrarily it is rather easy to fabricate polymer light-emitting diodes (PLED) and polymer photo-detectors on plastic substrates with a high pixel density.
    A proximity sensor which combines a polymer light-emitting diode and a polymer photodiode is presented. The operation wavelength is in the near infrared from 700 nm to 850 nm. The infrared emission is obtained by adding a color conversion film of polyvinylpyrrolidone polymer matrix blended with infrared dye to a visible-light polymer lightemitting diode. The photodetector relies on the direct charge-transfer exciton generation in a donor-acceptor polymer blend of poly(3-hexylthiophene) and (6,6)-phenyl-C61-butyric acid methyl ester.
    When the PLED is biased at 9 V the reflected light is strong enough and the detection distance is up to 19 cm for objects with various colors and roughness under ambient indoor lighting.

    中文摘要……………………………………………………………………………..Ⅰ 英文摘要……………………………………………………………………………..Ⅱ 致謝…………………………………………………………………………………..Ⅳ 目錄…………………………………………………………………………………..Ⅴ 圖目錄………………………………………………………………………………..Ⅷ Chapter 1 緒論 1-1前言……………………………………………………………………………..1 1-2 有機距離感測器之特性以及應用…………………………………………….2 1-3 研究動機與目的……………………………………………………………….2 1-4 論文架構……………………………………………………………………….3 Chapter 2 理論背景 2-1 有機發光二極體之發光原理...………………………………………………..4 2-2 螢光能量轉移...………………………………………………………………..5 2-3 有機發光二極體電激光...………………………………………….………….7 2-3-1 多層結構原理……………….………………………………………7 2-3-2 電激發光操作原理………….………………………………………8 2-3-3 發光效率…………………………………………………………...12 2-4 紅外染料發光原理………………………………………………………..….13 2-5 有機光偵測器之結構與基本原理…………………………………………...14 Chapter 3 實驗流程、材料介紹 3-1 元件製作流程………………………………………………………………...17 3-2 ITO蝕刻………………………………………………………………...17 3-3 有機發光二極體元件製作…………………………………………………...19 3-3-1 ITO清洗……………………………………………………...…19 3-3-2 電洞注入層(PEDOT:PSS)薄膜……………………………………19 3-3-3 主動區成膜…………………………………………………...20 3-3-4 陰極蒸鍍…………………………………………………………...21 3-4 有機光偵測元件製作………………………………………………………...22 3-4-1 ITO 清洗……………………………………………………...…22 3-4-2 電洞注入層(PEDOT:PSS)薄膜……………………………………22 3-4-3主動區成膜…………………………………………………...23 3-4-4 陰極蒸鍍…………………………………………………………...23 3-5 紅外光轉換膜以及可見光濾光片製作……………………………………...24 3-5-1 紅外光轉換膜……………………………………………………...24 3-5-2 可見光慮光片……………………………………………………...24 3-6 元件封裝與量測……………………………………………………………...25 3-6-1 封裝…………………………………………………………….…..25 3-6-2 有機發光二極體光電特性量測…………………………..……….26 3-6-3 紅外光轉換膜轉換特性量測……………………………….……..26 3-6-4 有機光偵測器光電流轉換效率量測(IPCE) …………..…………27 3-6-5 距離感測器之量測…………..…………………………………….28 3-7 材料介紹……………………………………………………………………...29 3-7-1 電洞注入材料(HIL)/電洞傳輸材料(HTL)……….……………….29 3-7-2 PLED發光材料………..……………………………….................30 3-7-3 Photodetector 吸光材料.......………………...…………………...30 3-7-4 陰極材料....……………………………………………...…………31 3-7-5 紅外光轉換膜材料……………………………………………...…31 Chapter 4 實驗設計與結果 4-1 激發光源之特性改良………………………………………………...33 4-1-1 使用不同退火條件、不同電極之影響…………………………....33 4-1-2 加入電洞傳輸層之影響……………………………………..….…35 4-2 紅外光轉換膜特性改良……………………………………………….…….38 4-2-1 紅光轉換染料…………………………….......................................38 4-2-2 綠光轉換染料…………………………...........................................47 4-3距離感測器之量測結果……………………………………………………….50 4-3-1 DC式距離量測結果…………………….........................................50 4-3-2 AC式距離量測結果…………………….........................................52 4-3-3 光耦合梁測結果……………………...............................................54 4-4 放大電路設計與量測結果………………….....................................................62 4-4-1 一級電路……………………...........................................................62 4-4-2 二級電路...........................................................................................64 4-4-3 三級電路...........................................................................................66 Chapter 5 結論………...…………………………………………………….….......67 Reference…………………………………………………………………………..68

    [1]. V. J. Lumelsky, M. S. Shur, and S. Wagner, IEEE Sensors Journal, 1, 41 (2001).
    [2]. L. B¨urgi, R. Pfeiffer, M. M¨ucklich, P. Metzler, M. Kiy, C. Winnewisser, Org.
    Electron.7, 114(2006).
    [3]. M. C. Aragoni, M. Arca, T. Cassano, C. Denotti, F. A. Devillanova, F. Isaia, V.
    Lippolis,D.Natali, L. Nitti, M. Sampietro, R. Tommasi, G. Verani, Inorg. Chem.
    Commun. 5, 869 (2002).
    [4]. Y. Yao, Y. Liang, V. Shrotriya, S. Xiao, L. Yu, Y. Yang, Adv. Mater. 19, 3979
    (2007).
    [5]. D. A. Skoog, D. M. West, F. J. Holler,“Fundamentals of analytical
    chemistry”,5th edition , Saunders College Publishing(1998)
    [6]. M. A. Lambert and P. Mark, ”Current Injection in Solids”, New York:
    Academic, 1970.
    [7]. J. Frenkel, Phys Rev. Letts., 14, 229 (1965).
    [8]. U. Wolf, V. I. Arkhipov, H. Bassler, Phys. Rev. B, 59 7507 (1999).
    [9]. S.R. Forrest, D. D. C. Bradley, M.E. Thompson, Adv. Mater., 15, 1043 (2003).
    [10]. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat.
    Mater. 4,864(2005).
    [11]. C. M. Yang, P. Y. Tsai, S. F. Horng, K. C. Lee, S. R. Tseng and H. F. Meng, J.
    T. Shy and C.F. Shu, Appl. Phys. Lett. 92, 083504 (2008).
    [12]. K. Maruszewski, M. Jasiorski, W. Strek, J. Mol. Struct. 610, 187 (2002).
    [13]. T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, T. Kaino, Appl.
    Phys.Lett. 85,185 (2004).
    [14]. K. Yamashita, T. Kuro, and K. Oe, H, Yanagi, Appl. Phys. Lett. 88, 241110
    (2006).
    [15]. Yan Yao, Hsiang-Yu Chen, Jinsong Huang, and Yang Yang, Appl. Phys. Lett.
    90,053509(2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE